# Точные измерения потерь силовых полупроводниковых приборов в открытом состоянии

Алекс Покривайло и Костел Карп

Компания Spellman High Voltage Electronics Corporation

475 Wireless Boulevard Hauppauge, NY 11788

Представлено на 28-м Международном симпозиуме по силовым модуляторам, Лас-Вегас, 27–31 мая, 2008 г., стр. 374–377

Краткий обзор: Для обеспечения безопасности конструкции температура перехода должна оставаться в рамках указанного диапазона. Для определения потерь мощности чаще всего используются три метода:

1. Калориметрический метод.

2. Использование калиброванных радиаторов.

3. Электрические измерения напряжения и тока на приборе и определение потерь путем интегрирования этих переменных.

Основное внимание в работе уделяется третьему методу с акцентом на точном измерении напряжения на приборе в открытом состоянии. Здесь же обсуждаются методы использования нелинейных делителей с глубокой фиксацией напряжения. Предлагаются новые схемы, позволяющие проводить точные измерения напряжения открытого состояния с хорошей разрешающей способностью по времени переключения переходов. Результаты моделирования схем подтверждаются обширными испытаниями. Приводятся примеры измерения напряжения открытого состояния на больших модулях БТИЗ и шунтирующих диодах (FWD). Полученные результаты применимы при определении характеристик различных силовых переключателей, например, газоразрядных приборов.

#### 1. Введение

Для обеспечения безопасности конструкции переключаемых систем преобразования мощности температура перехода мощных полупроводниковых приборов должна оставаться в рамках заданного диапазона. В практическом методе вычисления этого параметра используются следующие формулы:

$$T_i = T_c + \Delta T_i, \ \Delta T_i = QR_{th(i-c)}, \tag{1}$$

где  $T_c$  — температура корпуса,  $\Delta T_j$  — характеризует повышение температуры перехода относительно корпуса прибора, Q — составляющая потери мощности,  $R_{h(j-c)}$  — представляет собой тепловое сопротивление переход — корпус (определяется изготовителем). Все указанные температуры могут быть легко измерены; для определения потерь мощности потребуется больше усилий.

Обычно используются три метода:

- 1. Калориметрический метод (см., например [1]).
- 2. Использование калиброванных радиаторов.
- Электрические измерения напряжения v и тока i с последующим определением E с помощью интегрирования:

$$E = \int_{0}^{1} vidt , \qquad (2)$$

где T — период. Потеря мощности Q=Ef определяется как, где f=1/T.

Первый метод обеспечивает точные и самые достоверные результаты, но труден в применении, особенно в условиях с воздушным охлаждением. Второй метод проще, но неудобен для макетных установок с постоянно меняющимися схемами охлаждения. Мы остановимся более подробно на третьем методе как самом гибком и понятном для инженеров-электриков.

Уравнение (1) хорошо работает только при точном измерении тока и напряжения. В связи с очень большим динамическим диапазоном напряжений в открытых и закрытых состояниях, трудно разработать универсальную установку, хотя все же имеются рекомендации, как обойти эту проблему [2]. Для этого потребуются высококачественные датчики и хороший осциллограф, однако сами по себе они не гарантируют достоверных измерений. Безопасность обеспечивается с помощью дифференциальных пробников за счет точности измерений, которой приходиться жертвовать вследствие их ограниченной полосы частот и емкостных влияний.

При определении потерь переключения первостепенное значение имеет хорошая разрешающая способность по времени, тогда как динамический диапазон не так важен. Для топологий с жестким переключением эти потери можно оценить при помощи технических спецификаций. В цепях с мягким переключением доминируют потери за счет теплопроводности, а потерями переключения можно зачастую пренебречь. Здесь точность измерения напряжения открытого состояния выходит на передний план. Этой проблеме и посвящено последующее изложение материала.

Основной метод сужения динамического диапазона заключается в фиксации напряжения с помощью нелинейных делителей (см., например, [3]). На рис. 1 показаны два примера таких делителей. В варианте применения *а* используется *N* низковольтных диодов, подключенных последовательно. Поэтому когда прилагаемое напряжение падает ниже  $NV_{df}$  где  $V_{df}$ — порог прямой проводимости диода, ток через R1 не проходит, и напряжение на входе осциллографа равняется  $HV_m$ . Аналогично работает и схема *b*.



Рис. 1. Схемы базовых нелинейных делителей напряжения

Методики проведения эксперимента и средства измерения описаны далее в основном тексте статьи.

## 2. НЕДОСТАТКИ И ОГРАНИЧЕНИЯ БАЗОВЫХ СХЕМ

Схемы на рис. 1 представляют собой идеализированные схемы, или идеальные приборы для измерения низких напряжений в высоком динамическом диапазоне. В действительности существует ряд факторов, ограничивающих применимость этих схем в том виде, как указано на рис. 1. Здесь мы не будем останавливаться на очевидных ограничениях вследствие характеристик компонентов.

Одним из ограничений является инерция, которая вводится постоянной времени  $\tau = R_1 C_p$  измерительного контура, где  $C_{p} = C_{pr} + C_{pd}$  — емкость входа осциллографа (включая пробник)  $C_{pr}$ параллельно с динамической емкостью диодов/стабилитронов С Типичная емкость пассивных пробников для измерения напряжения составляет 10 пФ. Таким образом, при  $R_1 = 10$  кОм постоянная времени схемы может быть ~10-7 с, что весьма мало, если емкостью диодов можно пренебречь. Однако диоды остаются в течение некоторого времени смещенными в прямом направлении, после того как напряжение HVm падает ниже порогового значения, так как на них еще не подается никакого обратного напряжения. Это время может составлять приблизительно 1 мкс для диодов с заданным временем восстановления  $t_{rr} = 75$  нс, таких как ВҮМ26Е, как было показано во время экспериментов и имитации PSpice. Время перехода диодов в непроводящее состояние составляет ~0,5 мкс, поскольку обратный ток очень мал и не способен быстро удалить накопленный заряд.

Применение сигнальных диодов с  $t_{rr}$  порядка нескольких наносекунд разрешает проблему накопленного заряда, как демонстрируется на моделях с диодами 1N4500 с  $t_{rr} = 6$ . Однако эти и подобные диоды (в экспериментах мы использовали MMBD914,  $t_{rr} = 4$  нс) имеют значительный прямой ток порядка десятков микроампер при десятых долях вольта, что соответствует падению напряжения на R1 порядка 1 В. Таким образом, для уменьшения этого эффекта необходимо подключить последовательно большое количество диодов с сохранением некоторой неопределенности.



Рис. 2. Моделирование схемы рис. 1b с зеннеровскими диодами (стабилитронами) с помощью программы PSpice. Псевдонимы .Net на этом и последующих рисунках указывают связи (например, источник V1 связан с точкой «катушка» (coil) схемы на рис. 2)

Емкость зеннеровских диодов (стабилитронов), в отличие от диодов, должна учитываться, и в этом случае постоянная времени составляет порядка микросекунды. Это больше, чем типичное время переключения и соизмеримо с шириной импульса при высокой частоте преобразования. На рис. 2 и рис. 3 проиллюстрировано указанное утверждение. Эксперименты проводились с полумостовым квазирезонансным инвертором. Для контроля токов компонентов использовался пояс Роговского CWT15 [4]. Так как это по существу пробник переменного тока, кривые тока обычно смещены. На рис. 3 видно, что смещение в токе эмиттера было удалено цифровым способом.

## 3. Улучшенные практические схемы

Вредное действие емкости зеннеровского диода (стабилитрона) может быть скорректировано с помощью быстродействующего диода, подключенного последовательно, как показано на рис. 4, на котором моделируется фактическая схема (при этом в качестве зеннеровских диодов (стабилитронов) были использованы 1N751A, а в качестве диода — MMBD914). Имитационные модели на рис. 4 соответствуют измерениям на рис. 5. Можно заметить, что переключение открытого состояния осуществляется быстрее и с меньшим шумом, по сравнению с рис. 3. Это важно для расчета потерь с помощью (2). Следует заметить, что схема, подобная схеме на рис. 4, описывается в [3], но фактические формы сигнала характеризуются медленными переключениями порядка ~2 мкс, что может быть связано с использованием неподходящего диода.



Рис. 3. Измерение напряжения «коллектор — эмиттер» V<sub>се</sub> на БТИЗ СМ300DC-24NFM Роwerex с использованием схемы, приведенной на рис. 2. Осциллограф TDS 3024В изолирован от цепей заземления. На настоящем и других графиках в примечаниях к форме сигнала имеется информация по шкале и типам применяемых пробников



Рис. 4. Блокирование емкости зеннеровского диода (стабилитрона) с помощью быстродействующего диода. Возбуждение схемы осуществляется от источника V1 рис. 2

Хотя предполагается, что измерения, представленные на рис. 5, являются достоверными в том смысле, что напряжение между точками измерения было зарегистрировано точно, фактическое напряжение Vce отличается от этого значения вследствие внутренней индуктивности БТИЗ с боковой изоляцией LIGBT. Индуктивное падение напряжения  $L_{IGBT} \frac{di}{dt}$  может быть вычтено из измеренного напряжения; скорректированная форма сигнала, вычисленная для БТИЗ с боковой изоляцией LIGBT = 20 нГн, показана на рис. 6.



Рис. 5. Измерение напряжения насыщения  $V_{sat}$  (напряжение «коллектор-эмиттер»  $V_{ce}$ ) на CM300DC-24NFM с использованием схемы на рис. 4. Осциллограф изолирован от цепей заземления

Делитель на рис. 4 (зеннеровские диоды (стабилитроны) со смещением в прямом направлении избыточны) подходит для измерения Vsat силовых транзисторов (и, между прочим, многих других типов переключателей, таких как тринисторы, трансформаторы тока замыкания на землю и газоразрядные приборы), но не может использоваться для измерения падения напряжения в режиме прямого тока шунтирующих диодов (FWD), поскольку полярность на нем отрицательна относительно точки  $HV_m$ . (Без диода отсечки делитель универсален, но переключение в открытое состояние происходит медленно, как показано на рис. 2 и рис. 3.) Для решения этой проблемы можно использовать мост из быстродействующих диодов вокруг зеннеровского диода (стабилитрона) (рис. 7).



Рис. 6. *V<sub>ce</sub>* скорректированное по индуктивному падению напряжения (была применена цифровая фильтрация). Значение соответствует техническим данным на CM300DC-24NFM

На рис. 8 показана кривая тока на шунтирующем диоде IXYS DSEI 2x61 (в один модуль входит два параллельно подключенных диода) вместе с кривой напряжения, замеренной с помощью делителя, изображенного на рис. 4 (без быстродействующего диода), на осциллографе, изолированном от цепей заземления. Кривая напряжения имеет форму почти синусоидальной волны с плавным задним фронтом импульса, который представляет собой погрешность измерения, вызванную характерным дефектом этой схемы (емкость зеннеровского диода (стабилитрона)).

Применение делителя рис. 7 обеспечивает уже другую картину. Считается, что он значительно улучшает измерение, как можно видеть на рис. 9, на котором также показана откорректированная форма сигнала и кривые потерь. И опять же фактическое прямое падение напряжения меньше на величину индуктивной составляющей.



Рис. 7. Мост из быстродействующих диодов вокруг зеннеровского диода (стабилитрона) одинаково хорошо подходит для измерения как положительных, так и отрицательных низких напряжений в широком динамическом диапазоне. Возбуждение схемы осуществляется от источника V1 рис. 2



Рис. 8. Кривая 2 — прямое падение напряжения на шунтирующем диоде IXYS DSEI 2x 61 (отрицательная часть). Фиксированное напряжение смещения положительной величины (непроводящий диод) — вне шкалы. Емкость зеннеровского диода (стабилитрона) (делитель на рис. 4) влияет на время падения напряжения





Рис. 9. Потери на шунтирующем диоде FWD IXYS DSEI 2x61. График а — зеленая кривая — это измеренный сигнал, коричневая кривая — V<sub>fud</sub> скорректированная по индуктивному падению напряжения LdI<sub>fud</sub>/dt (индуктивность блока диодов оценивается на уровне 5 нГн). Зеленая и коричневая кривая на графике b соответствуют их аналогам на графике

а. Делитель рис. 7, осциллограф, изолированный от цепей заземления

# 4. Измерение без заземления осциллографа или дифференциальное измерение? Обеспечение безопасности

Как правило, корпус осциллографа заземляется в целях безопасности, а измерения без заземления выполняются дифференциальными датчиками в соответствии с рекомендациями поставщиков осциллографов (см., например, [2]). Однако наш опыт показывает, что качество измерений при этом значительно падает в сравнении с тем случаем, когда для таких целей используется осциллограф, изолированный от заземления вместе с опорной точкой, например, эмиттером транзистора или анодом шунтирующего диода. Примеры использования дифференциального датчика Р5200 для измерения Vce и прямого падения напряжения на шунтирующем диоде показаны на рис. 10 и рис. 11 соответственно.





По нашему мнению, они «менее достоверны», чем их аналоги, измеренные приборами, изолированными от цепей заземления, как показано на рис. 5 и рис. 9 (см. также совмещение результатов измерения, полученных дифференциальным методом и методом с изоляцией измерительных приборов от цепей заземления, и рис. 12), что можно объяснить ограниченной полосой частот пробника (25 МГц для Р5200 по сравнению с 500 МГц для Р6139А), емкостью выводов относительно земли в дополнение к емкости 7 пФ каждого входа (предполагаемая общая индуктивность 30 пФ) и большим колебанием напряжения (~360 В при напряжении питания 600 В) на входах относительно земли. Поэтому в таких случаях предпочтительнее использовать осциллографы с питанием от батареи, такие как Tektronix TPS. А еще более хорошим, универсальным и менее дорогостоящим решением будет использование обычных осциллографов с питанием от источника бесперебойного питания, отключенного от сети питания. При измерениях приборами, изолированными от цепей заземления, необходимо соблюдать обычные правила техники безопасности.



Рис. 11. Кривая 3 — прямое падение напряжения на шунтирующем диоде IXYS DSEI 2x 61. Два параллельно подключенных модуля. а — широкополосный пробник P6139A, b — дифференциальный пробник. Оба измерения были проведены с помощью осциллографа, изолированного от цепей заземления





# 5. Заключение

Для измерения напряжения открытого состояния переключателей большой мощности рекомендуется применение делителя на рис. 4. Фиксированное напряжение смещения должно быть откорректировано с учетом значения открытого состояния с помощью необходимого количества зеннеровских диодов (стабилитронов). Измерения приборами, изолированными от цепей заземления, обеспечивают более высокую точность, но при этом необходимо строго соблюдать правила техники безопасности.

## 6. Выражение признательности

Авторы выражают признательность за поддержку настоящей работы, оказанную компанией Spellman High Voltage Electronics Corporation.

## 7. Библиографический список

- C. Huang, P. Melcher, G. Ferguson and R. Ness, "IGBT and Diode Loss Measurements in Pulsed Power Operating Conditions", Proc. Power Modulator Symposium, 2004, pp. 170–173.
- [2] S. Gupta, Power Measurements and Analysis: Challenges and Solutions, Tektronix White Paper.
- [3] A. Calmels, "VDS(on), VCE(sat) Measurement in a High Voltage, High Frequency System", Advanced Power Technology, Application note APT0407, November 2004.
- [4] http://www.pemuk.com/pdf/cwt\_mini\_0605.pdf