СТРАНИЦА 1 ИЗ 5

Микрофокусные источники рентгеновского излучения Monoblock® µXRB130P65 компании Spellman предназначены для получения изображений с высоким разрешением. В источниках используется микрофокусная рентгеновская трубка с анодным напряжением до 130 кВ при мощности 65 Вт. Такие характеристики, как входное напряжение питания 24 В постоянного тока, малые габаритные размеры и стандартный цифровой интерфейс RS-232 упрощают интеграцию источника µXRB130P65 в вашу рентгеновскую систему. Малый диаметр фокусного пятна, оптимизированный для работы в диапазоне рабочих напряжений, и большое геометрическое увеличение в сочетании со стабильными выходными характеристиками высокой интенсивности обеспечивают отсутствие искажений, превосходное качество 2D- и 3D-изображений.

ТИПОВЫЕ ПРИМЕНЕНИЯ

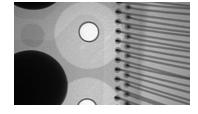
Промышленность:

Исследование печатных плат и электронных компонентов Неразрушающий контроль металлических и пластиковых деталей с высоким разрешением

Микро-КТ для промышленного применения Исследование аккумуляторов

Медицина:

Микро-КТ для применения в биологических науках


ВАРИАНТЫ ИСПОЛНЕНИЯ

WR Широкий пучок

EΤ Удлиненная трубка (только для широкого пучка)

LW Облегченный вариант

Источник uXRB130P65 идеально подходит для таких применений, как контроль печатных плат и аккумуляторных батарей, а также в области промышленной/ медицинской микро-КТ.

Фотографии предоставлены ThermoFisher Scientific

128149-001 REV. C

Северное шоссе, 10, офис 221 г. Раменское, Россия, Московская область, 140105 Телефон: +7 496 465 92 40, факс: +7 496 465 92 41 Электронная почта: sales@spellmanhv.ru

www.spellmanhv.com Spellman CHF

- Интегрированная рентгеновская трубка и управляющая электроника в одной компактной сборке
- Стандартный цифровой интерфейс RS-232 обеспечивает доступ к журналам диагностики и эксплуатации
- Стандартный графический интерфейс для управления
- Размер фокусного пятна 7 микрон для узкого пучка
- Размер фокусного пятна 8 микрон для широкого пучка
- Расстояние от фокусного пятна до выходного окна 10/14 мм обеспечивает высокое геометрическое увеличение

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Преимущества узкого пучка (Стандартный вариант):

Малое круглое пятно оптимизировано для диапазона напряжений и мощностей так, чтобы обеспечивать изображения без искажений. Рабочая мощность в 4 Вт обеспечивает фокусное пятно размером 6 микрон для получения изображений с высоким разрешением. Расстояние до выходного окна в 14 мм обеспечивает значительное геометрическое увеличение.

Характеристики узкого рентгеновского пучка (Стандартный вариант):

Эллиптичность пятна: ±20% при 16 Вт, 130 кВ (усредненное

значение)

Геометрия пучка: ≥ 53°, конусный пучок, однородный профиль пучка в любом направлении

Расстояние от окна

до фокусного пятна: 14 мм ± 0,5 мм

Диаметр выходного окна

(без коллимации): ≈19 мм

Материал и толщина

Бериллий, 0,25 мм выходного окна:

Материал мишени: Вольфрам

Преимущества широкого пучка (вариант исполнения WB):

Конусный пучок 115 градусов хорошо подходит для задач автоматизированного контроля, где требуется большое область обследования для максимальной пропускной способности или для исследований под различным углом. Расстояние до окна в 10 мм обеспечивает большое геометрическое увеличение.

Характеристики широкого рентгеновского пучка (вариант исполнения WB):

Эллиптичность пятна: ±20% при 16 Вт, 130 кВ

(усредненное значение)

Конусный пучок излучения: 115°, конусный пучок, однородный

профиль пучка в любом направлении

Расстояние от окна

до фокусного пятна: $10 \text{ мм} \pm 0.5 \text{ мм}$

Диаметр выходного

≈38 мм окна (без коллимации):

Материал и толщина

выходного окна: Бериллий, 0,51 мм

Материал мишени: Вольфрам

Утечка рентгеновского излучения: противоположно направлению излучения ≤0,5 мР/ч на расстоянии 2,55 см от корпуса

Входное напряжение:

+24-27 В постоянного тока

Входной ток:

<6 A

СТРАНИЦА 2 ИЗ 5

Питание анода:

Выходное напряжение: от 20 кВ до 130 кВ (относительно катода) выходной ток: от 20 кВ до 130 кВ до 130 кВ

Условия окружающей среды:

Рабочая температура: от 0 до $+32\,^{\circ}\text{C}$ Температура хранения: от -20 до $+70\,^{\circ}\text{C}$

Влажность: от 5 до 95%, без конденсации

Высота над уровнем моря: до 1524 м

Охлаждение:

Встроен внутренний вентилятор. Необходимо обеспечить достаточную циркуляцию воздуха вокруг блока.

Цифровой интерфейс:

RS-232

Конструкция:

См. чертежи

Macca:

Стандартный вариант: 13,60 кг

Стандартный вариант/

Удлиненная трубка: 15,40 кг Облегченный вариант (LW): 10,43 кг

Облегченный вариант/

Удлиненная трубка: 12,24 кг

Соответствие нормативным документам:

Соответствует нормам Директивы по электромагнитной совместимости. Соответствует нормам Директивы по низковольтным устройствам.

Графический пользовательский интерфейс:

Экран диагностики

Ј1 ВХОД/ВЫХОД — 16-КОНТАКТНЫЙ РАЗЪЁМ АМР 206036-1

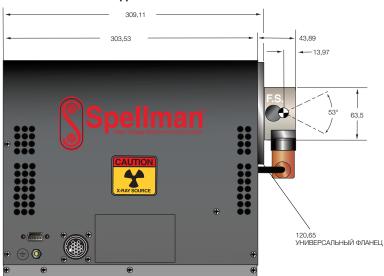
KOHT.	СИГНАЛ	ПАРАМЕТР	
1	Выход блокировки камеры	Чтобы замкнуть цепь блокировки камеры, соедините контакт 1 с контактом 2, R<2 МОм	
2	Вход блокировки камеры	Чтобы замкнуть цепь блокировки камеры, соедините контакт 2 с контактом 1, R<2 МОм	
3	Выход индикатора включения рентгеновского источника	Контакты рассчитаны на 120 В ~ 3A/250 В ~ 1,5 А Замкнут при включенном рентгеновском источнике	
4	Вход индикатора включения рентгеновского источника	Контакты рассчитаны на 120 В~ 3A/250 В~ 1,5 А Замкнут при включенном рентгеновском источнике	
5	Не используется	Не используется	
6	Основной выход блокировки по мощности	Для замыкания цепи блокировки мощности, соедините контакты 6, 7 с контактами 8, 10, R<2 МОм	
7	Основной выход блокировки по мощности	Чтобы замкнуть цепь блокировки по мощности, соедините контакты 6 и 7 , R<2 МОм	
8	Основной вход блокировки по мощности	Чтобы замкнуть цепь блокировки по мощности, соедините контакты 8, 10 с контактами 6, 7, R<2 МОм	
9	Не используется	Не используется	
10	Основной вход блокировки по мощности	Чтобы замкнуть цепь блокировки по мощности, соедините контакты 8, 10 с контактами 6, 7, R<2 МОм	
11	+24 В постоянного тока (+)	+24 В постоянного тока (+)	
12	+24 В постоянного тока (+)	+24 В постоянного тока (+)	
13	+24 В постоянного тока, (-)	+24 В постоянного тока, (-)	
14	+24 В постоянного тока, (-)	+24 В постоянного тока, (-)	
15	Выход индикатора включения рентгеновского источника	Контакты рассчитаны на 24 В постоянного тока 3 А Замкнут при включенном рентгеновском источнике	
16	Выход индикатора включения рентгеновского источника	Контакты рассчитаны на 24 В постоянного тока 3 А Замкнут при включенном рентгеновском источнике	

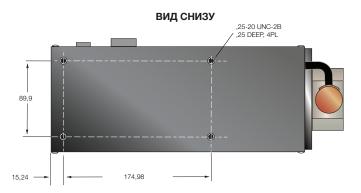
Ј2 ЦИФРОВОЙ ИНТЕРФЕЙС RS-232 — 9-КОНТАКТНЫЙ РАЗЪЁМ АМР 788903-1

конт.	СИГНАЛ	НАИМЕНОВАНИЕ	
1	DCD	Сигнал об активности и готовности к передаче	
2	RD	Принятые данные	
3	TD	Переданные данные	
4	DTR	Сигнал готовности терминала	
5	SGNO	Земля сигналов	
6	DSR	Сигнал готовности данных	
7	RTS	Запрос готовности к передаче	
8	CTS	Подтверждение готовности к передаче	
9	RI	Индикатор вызова	

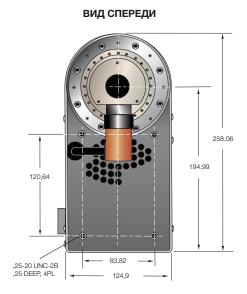
ТАБЛИЦА С ДАННЫМИ ФОКУСНОГО ПЯТНА

ПАРАМЕТР		УЗКИЙ ПУЧОК	широкий пучок
Рабочий диапазон напряжения:		45–130 кВ	50–130 кВ
Максимальная мощность		65 Вт, 130 кВ	65 Вт, 130 кВ
Максимальный ток		0,500 мА	0,500 мА
Размер	4 BT	≤ 7 мкм, 45–130 кВ	≤ 8 мкм, 50–130 кB
фокусного пятна	8 Вт	≤ 10 мкм, 45–130 кВ	≤ 14 мкм, 50–130 кВ
	16 BT	≤ 22 мкм, 45–130 кВ	≤ 24 MKM, 50–130 KB
	32 BT	≤ 48 мкм, 70–130 кВ	≤ 48 мкм, 70–130 кВ
	40 BT	≤ 60 мкм, 80–130 кВ	≤ 60 мкм, 80–130 кВ
	65 BT	≤ 100 мкм, 130 кВ	≤ 100 мкм, 130 кВ

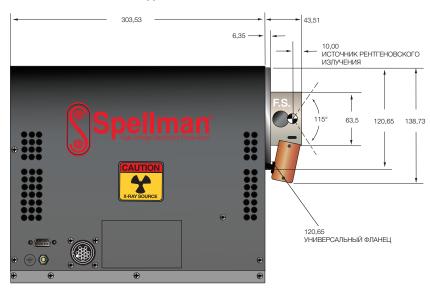

Порядок заказа:	
Стандарт вариант (узкий пучок)	№ по каталогу: µXRB130P65NB
Вариант исполнения с широким пучком	№ по каталогу: µXRB130P65WB
Вариант исполнения с широким пучком и удлиненной трубкой	№ по каталогу: µXRB130P65WBET

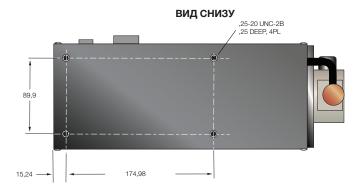


СТРАНИЦА З ИЗ 5

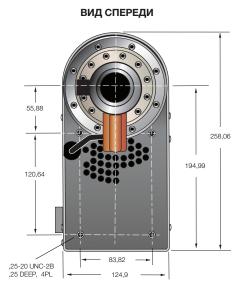

РАЗМЕРЫ в миллиметрах [мм]

УЗКИЙ ПУЧОК (Стандартный вариант) ВИД СБОКУ

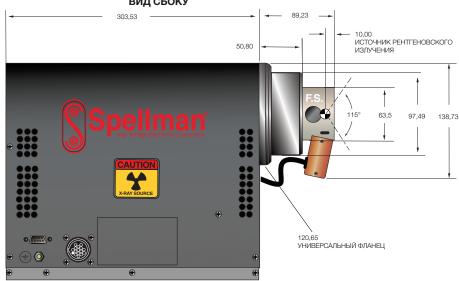


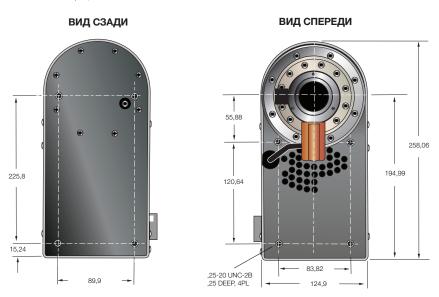


СТРАНИЦА 4 ИЗ 5


РАЗМЕРЫ в миллиметрах [мм]

ШИРОКИЙ ПУЧОК (Вариант WB) ВИД СБОКУ




СТРАНИЦА 5 ИЗ 5

РАЗМЕРЫ в миллиметрах [мм]

ШИРОКИЙ ПУЧОК (Вариант WB) и УДЛИНЕННАЯ ТРУБКА (Вариант ET) ВИД СБОКУ

ВИД СНИЗУ,25-20 UNC-2B ,25 DEEP, 4PL

