

Спросите нас о возможностях наших рентгеновских подсистем

СТРАНИЦА 1 ИЗ 5

Серия генераторов uX — это результат применения компанией Spellman современных методов компоновки высоковольтных устройств и выполнения поверхностного монтажа в сочетании с запатентованной технологией изоляции, что позволило создать этот сверхкомпактный модуль рентгеновского генератора. Генератор uX обеспечивает питание рентгеновских трубок с заземленным катодом многих известных производителей и характеризуется выходным напряжением 0-50 кВ / 65 кВ при токе 2 мА и мощностью 50, 65 или 75 Вт. Генератор uX использует схему управления катодом прямого накала с обратной связью, обеспечивая точную регулировку силы тока пучка. Источник питания постоянного тока с низким уровнем шумов для катода прямого накала обеспечивает силу тока в диапазоне от 0,3 до 3,5 А. Кроме точной регулировки, высокой стабильности и низких пульсаций, генератор uX предлагает локальное и дистанционное аналоговое управление предельными значениями напряжения пучка, тока эмиссии и тока накала. Интерфейс USB, RS-232 и Ethernet является стандартным.

ТИПОВЫЕ ПРИМЕНЕНИЯ

Рентгеновские генераторы серии uX разработаны для обеспечения питания рентгеновских трубок от ведущих мировых производителей. Информацию о том, можно ли запитать конкретную трубку от генератора uX, можно получить у представителей по продажам компании Spellman.

ОПЦИИ

ХСС высоковольтный кабель, совместимый с модулем XRM

(только 50 кВ)

5VPM программирование (от 0 до 5 В) и масштабирование

контроллеров

GB сдвиг сетки (дополнительно)

GF заземленный катод с прямым накалом

5302 высоковольтный кабель Mammoflex для блока uX

2001 высоковольтный кабель Mammoflex для блока uX с опцией XCC

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Входные параметры:

+24 В постоянного тока ±10 %, 5,0 А (макс.) при 50 Вт или 75 Вт

+24 В постоянного тока ±10 %, 5,0 A (макс.) для модулей на 65 кВ/65 Вт

КПД:

Обычно 75 %

Выход:

от 0 до 50 кВ при силе тока от 0 до 2 мА, ограничение до 50 Вт или 75 Вт. 0–65 кВ при 2 мА (ограничение до 65 Вт)

- Напряжение 50 кВ при токе 2 мА. Мощность 50 или 75 Вт макс.
- Напряжение 65 кВ при токе 2 мА. Максимальная мощность 65 Вт
- Регулируемый отдельный источник питания катода прямого накала
- Защита от повышенного напряжения и короткого замыкания
- Программирование значений силы тока и напряжения
- Локальное и дистанционное управление током эмиссии
- Функция блокировки для обеспечения безопасности
- Стандарты передачи данных RS-232, Ethernet и USB
- Резервный управляющий сигнал высокого напряжения
- Возможность изготовления в соответствии с требованиями производителя оригинального оборудования

www.spellmanhv.com/manuals/uX

Управление напряжением:

Местное: внутренний многооборотный потенциометр для

настройки уровня напряжения от нуля до полного

выходного напряжения

Дистанционное: от 0 до +10 В постоянного тока, от нуля до пол-

ного выходного напряжения, пропорционально

Точность: ±1 %. Z_{IN}: 10 МОм

Управление эмиссией:

Дистанционное:

Местное: внутренний потенциометр для настройки силы тока

пучка (от нуля до полной выходной силы тока) от 0 до +10 В постоянного тока, пропорционально

диапазону от 0 до полного выходного тока Точность: $\pm 1\%$. Z_{IN} : 10 МОм

Также есть возможность регулировки предельных значений силы тока и напряжения на катоде прямого накала и управления его прогревом

Источник питания постоянного тока для катода прямого накала:

Отдельный источник питания для катода прямого накала генерирует обратный сигнал тока эмиссии для точного поддержания низкого

значения тока рентгеновской трубки.
Ток: 3,5 A, регулируемый предел

Напряжение: 5,0 В (предельное)

Условия окружающей среды:

Рабочая температура: от 0 до +50 °C Температура хранения: от -40 до +85 °C

Влажность: от 0 до 90 % без конденсации

Температурный коэффициент:

0,01 % на 1 °C, с регулированием напряжения и тока

Стабильность:

0,05 % за 8 часов, после получасового прогрева

Контроллеры напряжения и силы тока:

от 0 до +10 В постоянного тока, пропорционально, от 0 до полного выходного напряжения. Точность $\pm1~\%$

Резервный контроллер напряжения:

Генератор может снабжаться резервным делителем высоковольтного обратного сигнала с пропорциональным выходным напряжением от 0 +10 В пост. тока = 0–100 % в соответствии с требованиями клиента

Размеры:

Модуль 50 кВ: $B \times \coprod \times \Gamma$ (101,6 мм \times 72,95 мм \times 202,20 мм) Модуль 65 кВ: $B \times \coprod \times \Gamma$ (101,6 мм \times 72,95 мм \times 228,60 мм) Опция ХСС: $B \times \coprod \times \Gamma$ (101,6 мм \times 72,95 мм \times 228,60 мм)

Macca:

Тип. 2,1 кг

Соответствие нормативным документам:

Устройства соответствуют Директиве по электромагнитной совместимости EEC, Директиве по низковольтным устройствам EEC, UL/CUL (файл E227588) и RoHS.

СТРАНИЦА 2 ИЗ 5

Цифровой интерфейс

На устройствах серии uX устанавливается стандартный интерфейс USB, RS-232 и цифровой интерфейс Ethernet.

Использование этих стандартных цифровых интерфейсов может значительно упростить требования к подключению источника питания, сэкономить время и деньги пользователя, а также повысить функциональность и общую производительность. Компания Spellman поставляет с блоками серии иХ графический интерфейс, который позволяет заказчику адаптировать рабочие функции блока иХ и одновременно обеспечивает базовые рабочие функции источника питания. Более подробно возможности цифрового интерфейса иХ описаны в инструкции к блокам.

Крупный план, показывающий разъемы интерфейса

Основной экран управления

Экран обмена информацией

Экран состояния катода прямого накала

Сетевое смещение (опция)

Поддержка функции автоматической настройки рентгеновских трубок Apogee компании Oxford.

Опция настройки сеточного смещения, разработанная компанией Spellman для серии uX, предназначена специально для популярных и пользующихся успехом у покупателей рентгеновских трубок с поддержкой сеточного смещения. Напряжение сеточного смещения задается с помощью специальных встроенных схем переключения высокого напряжения, что обеспечивает максимальную универсальность этого решения и широкие возможности управления. Выходное значение сетевого смещения регулируется с помощью изменения уровня напряжения, а топология, совместимая с целевыми параметрами силы тока, идеально подходит для использования в электронно-лучевом оборудовании компании Wehnelt. Защита от образования дуги и возникновения коротких замыканий на выходных разъемах сеточного смещения предотвращает повреждение устройства в случае импульсных помех или ошибок при установке.

Работа в режиме отслеживания

При функционировании в режиме отслеживания контроллер напряжения (0–10 В постоянного тока = 0–50 кВ), регулирующий напряжение на главном выходном высоковольтном разъеме, подключен внутри устройства ко входу для программирования сеточного смещения (0–10 В постоянного тока = от 0 до -300 В постоянного тока сеточного смещения). Этот способ подключения позволяет пропорционально выполнять изменение выходных значений сеточного смещения в соответствии с отслеживаемыми показателями напряжения на главном выходном разъеме.

Многооборотный потенциометр ограничивает максимальное значение выходного напряжения сеточного смещения для рентгеновской трубки, обеспечивая широкие возможности настройки.

Выходной ток сеточного смещения подается через вспомогательную 2-полюсную клеммную колодку Phoenix Contact, в комплект также входит сопрягающий соединитель.

ХАРАКТЕРИСТИКИ СЕТОЧНОГО СМЕЩЕНИЯ

Выходное напряжение: от 0 до -300 В постоянного тока

Выходной ток: 0,25 мА (макс.)

Нестабильность по нагрузке: 1 % выходного напряжения от нуле-

вой до полной нагрузки

Нестабильность напряжения в сети: $\pm 1~\%$ при изменении входного напряжения на $\pm 10~\%$

папряжения на ±10 %

СТРАНИЦА З ИЗ 5

ВЫХОДНОЙ РАЗЪЕМ ВЫСОКОГО НАПРЯЖЕНИЯ

Отсоединяемый сухой разъем, разработанный компанией Spellman.

Стандарт: Высоковольтный кабель с полиэтиленовой

оболочкой длиной 1 м входит в комплект поставки. **5302:** Высоковольтный кабель типа Mammoflex длиной 1 м

входит в комплект поставки, SHV н/д 201946-007.

2001: Высоковольтный кабель типа Mammoflex длиной 1 м

входит в комплект поставки, совместим с опцией

XCC SHV, н/д 201946-002.

РАЗЪЕМ ВВОДА ПИТАНИЯ

	Nº	СИГНАЛ	ПАРАМЕТР
ı	1	Входное напряжение +24 В	+24 В при 5 А (макс.)
ı	2	Обратный контур: 24 В (заземление)	Заземление питания

РАЗЪЕМ КАТОДА ПРЯМОГО НАКАЛА

Nº	СИГНАЛ	ПАРАМЕТР
1	Выходной ток катода прямого накала	от 0,3 А до 3,5 А, 5 В, макс.
2	Обратный контур катода прямого накала	Обр. контур катода прямого накала

Примечание. Провод обратного контура катода прямого накала не может быть заземлен, т. к. это может накоротко замкнуть обратный контур контроля тока в трубке к блоку uX. При необходимости заземления катода, пожалуйста, при составлении заказа выберите опцию GF (заземленный катод с прямым накалом).

РАЗЪЕМ АНАЛОГОВОГО ИНТЕРФЕЙСА 15-КОНТАКТНАЯ ВИЛКА, МИНИ, ТИП D

Nº	СИГНАЛ	ПАРАМЕТРЫ СИГНАЛОВ
1	Обратный контур контроллера	Земля логических сигналов
2	Контроллер напряжения	0-10 B = от 0 до полного значения, Zout = 1 кОм
3	Контроллер тока	0-10 B = от 0 до полного значения, Zout = 1 кОм
4	Выходной разъем блокировки	Чтобы включить, подключите контактный элемент включения ВВ контура (HVON) на 12 В к 15-контактному разъему
5	Опорное напряжение +10 B	+10 В при 1 мА (макс.)
6	Контроллер катода прямого накала	1 B = 1 A, Zout = 1 кОм
7	Вход программирования напряжения	0—10 B = от 0 до полного значения, Zin = 10 MOм
8	Местное программирование напряжения*	0—10 В, регулировка с помощью отвертки
9	Установка предельного значения тока в катоде прямого накала*	1 B = 1 A, регулировка с помощью отвертки
10	Вход для программирования силы тока	0—10 B = от 0 до полного значения, Zin = 10 МОм
11	Местное программирование тока*	Десятиоборотный потенциометр, регулировка с помощью отвертки
12	Не используется (выходной разъем +24 В для блокировки)	(Возможна установка дополнительной блокировки)
13	Не используется (катушка блокировки)	(Возможна установка дополнительной блокировки)
14	Установка предельного значения прогрева нити накала*	1 В = 1 А, регулировка с помощью отвертки
15	Обратный контур блокировки	Заземление блокировки

^{*}Обозначает 10-оборотный потенциометр, доступный через отверстия в крышке.

РАЗЪЕМ СЕТОЧНОГО СМЕЩЕНИЯ 2-КОНТАКТНЫЙ РАЗЪЕМ PHOENIX

	Nº	СИГНАЛ	ПАРАМЕТР
I	1	Заземление	Заземление корпуса
I	2	Сеточное смещение	от 0 до -300 В пост. тока

ЦИФРОВОЙ ИНТЕРФЕЙС USB— 4-КОНТАКТНЫЙ USB-РАЗЪЕМ ТИПА В

Nº	СИГНАЛ	ПАРАМЕТРЫ СИГНАЛОВ
1	VBUS	+5 В пост. тока
2	D-	Данные –
3	D+	Данные +
4	GND	Заземление

ЦИФРОВОЙ ИНТЕРФЕЙС ETHERNET — 8-КОНТАКТНЫЙ РАЗЪЕМ RJ45

Nº	СИГНАЛ	ПАРАМЕТРЫ СИГНАЛОВ
1	TX+	Передача данных +
2	TX-	Передача данных –
3	RX+	Прием данных +
4	NC	Не подключен
5	NC	Не подключен
6	RX-	Прием данных –
7	NC	Не подключен
8	NC	Не подключен

ЦИФРОВОЙ ИНТЕРФЕЙС RS-232— 9-КОНТАКТНАЯ РОЗЕТКА РАЗЪЕМА ТИПА D

Nº	СИГНАЛ	ПАРАМЕТРЫ СИГНАЛОВ
1	NC	Не подключен
2	TX out	Передача данных
3	RX in	Прием данных
4	NC	Не подключен
5	SGND	Заземление
6	NC	Не подключен
7	NC	Не подключен
8	Контроллер	0–10 В = от 0 до полного
	напряжения 2	значения, Zout = 1 кОм
9	Состояние	+15 B = в норме, 0 B = неисправность,
		потери от источника мас. 3 мА

Порядок заказа

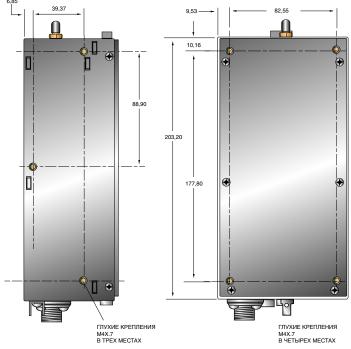
Пример номера выбранной модели:

Блок 50 Вт: uX50P50 Блок 65 Вт: uX65P65 Блок 75 Вт: uX50P75

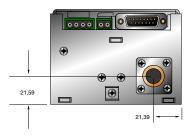
Опции добавляются к номеру модели следующим образом:

uX50P50/XCC или uX50P75/GB

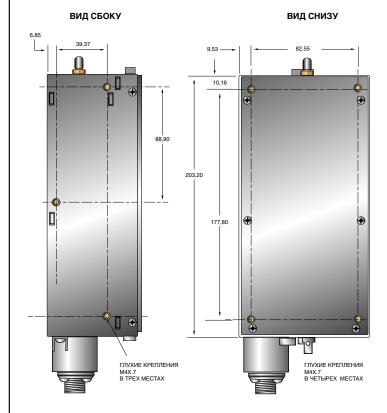
Спросите нас о возможностях наших рентгеновских подсистем


СТРАНИЦА 4 ИЗ 5

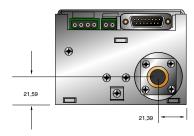
РАЗМЕРЫ: Миллиметры


50 κB

вид сбоку вид снизу



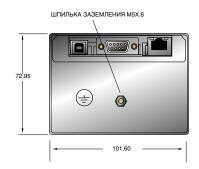
ВИД СПЕРЕДИ



50 кВ С ОПЦИЕЙ ХСС

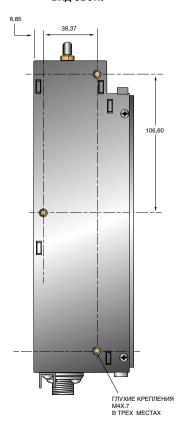
ВИД СЗАДИ ШПИЛЬКА ЗАЗЕМЛЕНИЯ МБХ.8 72.95

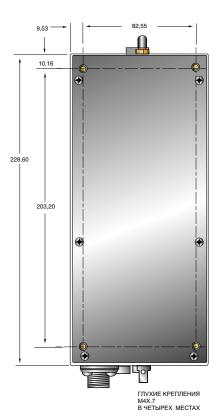
ВИД СПЕРЕДИ

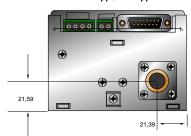


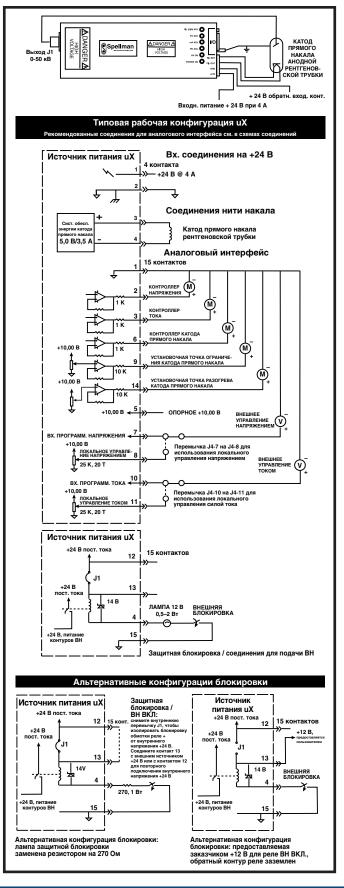
СТРАНИЦА 5 ИЗ 5

РАЗМЕРЫ: Миллиметры


ВИД СЗАДИ


65 kB


вид сбоку



ВИД СПЕРЕДИ

