

Spellman: серия высокой надежности XRBHR Monoblock®. Источники рентгеновского излучения предназначены для питания оборудования, изготавливаемого по спецификациям заказчика: биполярных рентгеновских генераторов, рассчитанных на напряжение 80 и 100 кВ и мощность 100, 210, 350 и 500 Вт. Такие особенности, как универсальный вход, компактная упаковка и стандартный цифровой интерфейс RS-232, упрощают интеграцию любой модели XRBHR в рентгеновскую систему. Для каждой модели XRBHR выпускаются блоки с веерным или коническим пучком излучения. Патентованная технология управления эмиссией посредством электронных устройств обеспечивает высокую точность сигнала тока, подаваемого на рентгеновскую трубку, и непревзойденную стабильность выходных характеристик. Серия XRBHR рассчитана на длительный срок эксплуатации с гарантией до 3 лет.

ТИПОВЫЕ ПРИМЕНЕНИЯ

Системы контроля качества пищевых продуктов, подтверждения уровня заполнения, сканирования, промышленного неразрушающего контроля, измерения толщины металлических покрытий.

ОПЦИИ

CB	Конический пучок

.5mm Трубка с фокальным пятном 0,5 мм

ST-TE

RA-SE Относительно вариантов кабеля см. стр. 4 **RA-TE**

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Характеристики рентгеновского излучателя:

Фокальное пятно: 0,8 мм (IEC 336) стандартное исполнение

0,5 мм (IEC 336) по заказу

Фильтр пучка:

 Ultem:
 1,50 мм ±0,15 мм

 Масло:
 9,0 мм ±0,25 мм

 Стекло:
 1,7 мм ±0,2 мм

 Ве:
 0,8 мм

Геометрия пучка:

Веерная: Стандарт. Угловое покрытие пучка составляет

90° при перпендикулярном положении плоскости пучка к оси рентгеновской трубки

и 12° в ширину (с допуском 2°).

По заказу. Конический пучок 40° в ширину

пучок: (с допуском 2°).

Входное напряжение:

Конический

100–240 В перем. тока $\pm 10\,\%$, 50/60 Гц, коэффициент мощности 0,98

• Компактность и малый вес

- Универсальный вход, коррекция коэффициента мощности
- Возможность установки с любой ориентацией в пространстве
- Аналоговый интерфейс управления, стандартный цифровой интерфейс RS-232 и интерфейс Ethernet
- Регистрация данных и прогрев рентгеновской трубки с помощью микропрограммного обеспечения

www.spellmanhv.com/manuals/XRBHR

Входной ток:

100 Вт при 2 А

210 Вт при 4 А

350 Вт при 6 А

500 Вт при 8 А

Напряжение рентгеновской трубки:

См. таблицу

Сила тока рентгеновской трубки:

См. таблицу

Мощность рентгеновской трубки:

См. таблицу

Нагрузка:

Нестабильность напряжения:

Линия: ±0,05 % максимального выходного напряжения при

 $\pm 10\%$ -м изменении номинального напряжения на входе $\pm 0.1\%$ максимального номинального выходного тока при

изменении нагрузки от 150 мкА до полной номинальной

_

Точность регулировки напряжения:

Измеряемое на рентгеновской трубке напряжение находится в пределах $\pm 2\,\%$ от заданного значения

Время нарастания напряжения:

Стандарт: время выхода на рабочий режим составляет < $500~\rm Mc$ от 10~% до 90~% от максимального номинального выходного напряжения

Пульсации напряжения:

0,5% амплитуды максимального напряжения для частот ≤1 кГц

Характеристики тока эмиссии

Нестабильность тока:

Линия: $\pm 0,05\%$ номинального выходного тока при $\pm 10\%$ -м

изменении номинального напряжения на входе

Нагрузка: ±0,1 % номинального выходного тока при изменении

от 50% до 100% номинального выходного

напряжения

Точность силы тока:

Измеряемая на рентгеновской трубке сила тока находится

в пределах $\pm 2\,\%$ от заданного значения

Время нарастания тока:

Стандарт: Время выхода на рабочий режим составляет <500 мс

от 10% до 90% максимального номинального тока

Защита от дуги:

4 дуги за 10 с со временем гашения 100 мс / временем восстановления рабочего режима после дуги 100 мс = отключение

Конфигурация нити накала:

Привод переменного тока нити накала, оснащенный системой управления эмиссией с обратной связью

Аналоговый интерфейс:

От 0 до 9 В пост. тока относительно земли для всех сигналов контроля. Для других сигналов — релейные и с открытым коллектором. См. таблицу контактов аналогового интерфейса.

Цифровой интерфейс:

Интерфейс RS-232 позволяет программировать напряжение и силу тока (в кВ и мА) и включать/выключать рентгеновское излучение. А также контролировать текущие значения напряжения и силы тока (в кВ и мА) и температуру масла.

Рабочая температура:

от 0 °C до +40 °C

Температура хранения:

от -40 °C до +70 °C

Влажность:

от 10% до 95% отн. влажности, без конденсации

Охлаждение:

Блок рентгеновского источника:

100 Вт: Конвекционное/внешнее принудительное воздушное

охлаждения для поддержания температуры блока $< 55~^{\circ}\mathrm{C}$

210 Вт: Принудительное воздушное охлаждения с внешним

питанием, 24 В пост. тока при 2 А

350/500 Вт: Принудительное воздушное охлаждения с внешним

питанием, 24 В пост. тока при 5 А с масляным насосом

и теплообменником

Контроллер:

Принудительное воздушное охлаждение внутренним вентилятором.

Точка заземления:

Отверстие М5 с внутренней резьбой на блоке. Шпилька заземления М5 на блоке управления, входит в комплектацию.

Размеры:

см. чертежи

Macca:

Блок рентгеновского источника:

100/210 Вт 75 фунтов (34 кг) 350/500 Вт 81,5 фунтов (37 кг)

Контроллер:

100/210 Вт: 4 фунта (1,18 кг) 350/500 Вт: 7 фунтов (3,18 кг)

Ориентация:

Возможность установки в любом положении.

Утечка рентгеновского излучения:

Не более 0,5 мР/час на расстоянии 5 см от внешней поверхности.

Соответствие нормативным документам:

Изделие соответствует требованиям технического регламента ЕЭС по электромагнитной совместимости, технического регламента ЕЭС на низковольтное оборудование, внесено в реестры испытательных лабораторий UL/CUL (запись E235530).

ТАБЛИЦА ВЫБОРА МОДЕЛИ

Модель	Макс. напряжение	Макс. сила тока	Макс. мощность
XRB80PN210HR	80 KB	5,25 мА	210 BT
XRB80PN350HR	80 kB	8 мА	350 BT
XRB80PN500HR	80 KB	8 мА	500 BT
XRB100PN100HR	100 кВ	2 мА	100 BT
XRB100PN210HR	100 кВ	4,2 MA	210 BT
XRB100PN350HR	100 кВ	7 мА	350 BT
XRB100PN500HR	100 кВ	8 мА	500 BT

СВЕТОДИОДНЫЕ ИНДИКАТОРЫ

инд.	СИГНАЛ	СОСТОЯНИЕ Включен при	цвет инд.
1	OV Error 6	Повышенное напряжение	Красный
2	UV Error 5	Пониженное напряжение	Красный
3	UC Error 4	Пониженная сила тока	Красный
4	OC Error 3	Повышенная сила тока	Красный
5	ARC Error 2	Отказ из-за возникновения дуги Красный	
6	OT Error 1	Превышение температуры Красный	
7	X-Ray On	Генерация рентгеновского излучения	Зеленый
8	Power On	На входе питания перем. тока есть напряжение Зеле	

SMART XRB

Блок XRBHR оснащен двумя новыми цифровыми функциями: Регистрация данных и прогрев рентгеновской трубки с помощью микропрограммного обеспечения

Регистрация данных:

Считаете это «черным ящиком», как в самолетах. Система регистрации данных сохраняет данные событий в штатном режиме и во время неисправностей. События неисправностей отключают высокое напряжение:

СОБЫТИЯ НЕИСПРАВНОСТЕЙ

Температура Дуга

Высокий ток Низкое напряжение Высокое напряжение Сторожевая система Перегрузка по мощности Блокировки

XRBHR сохраняет данные в окне $620~\rm Mc$ до события, во время самого события и $620~\rm Mc$ после события. Данные записываются с шагом $20~\rm Mc$ (всего $62~\rm 3amepa$) и включат в себя:

Напряжение на аноде (кВ)

Суммарное напряжение (кВ)

Нить накала

Нить накала

Нить накала

Напряжение на катоде (кВ)

Суммарный ток (мА)

Температура

Записываются также события, не являющиеся событиями неисправности — это изменение уставок или режимов работы блока.

СОБЫТИЯ, НЕ ЯВЛЯЮЩИЕСЯ СОБЫТИЯМИ НЕИСПРАВНОСТИ

ВН вкл. ВН выкл.

Уставка напряжения (кВ) Уставка тока (мА)

Низкий ток Уставка предельного тока нити накала Уставка предварительного прогрева Проседание напряжения линии

Данные по неисправностям — это, фактически, графики. Данные по событиям, не являющимся событиями неисправности, сохраняются в формате: тип события и отметка даты и времени. Существует также событие, не приводящее к отключению рентгеновской трубки, отмечающее факт отсутствия проведения профилактического технического обслуживания, наступающее по истечение 4 лет с момента заводской установки рентгеновской трубки или зарегистрированной наработки 15 000 часов ВН.

Прогрев рентгеновской трубки в холодное время года:

На всех блоках есть предзаписанные таблицы времени прогрева ренттеновской трубки в холодное время года, но заказчик может установить и свою собственную. Блок XRBHR обладает информацией о событиях включения, выключения и наработки часов рентгеновской трубки. В рамках программы профилактического технического обслуживания блок анализирует эти данные и принимает решение о применении того или иного протокола прогрева на основании фактической истории использования блока. Правильные процедуры прогрева помогут максимально продлить срок эксплуатации рентгеновской трубки.

СТРАНИЦА З ИЗ 8

Разъемы питания и интерфейса для блоков 100 и 200 Вт

BXOД ПИТАНИЯ ПЕР. TOKA — 3-KOHT. PHOENIX CONTACT 1858772

N₂	СИГНАЛ	ПАРАМЕТР
1	Вход питания пер. тока (выс.)	100–240 В пер. т. (выс.)
2	Земля	Земля
3	Вход питания пер. тока (нейтраль)	100-240 В пер. т. (нейтраль)

ПИТАНИЕ ПОСТ. Т. ДЛЯ ТЕПЛООТВОДНОГО БЛОКА — 4-КОНТ. AMP (210/350/500 BT) 206060-1

	N₂	СИГНАЛ	ОПИСАНИЕ	ПАРАМЕТР
	1	24 В пост. т.	Питонию вонтинаторо/нососо	24 В пост. т.
ſ	2	24 В пост. т. возвратный	Питание вентилятора/насоса	при 5 А
ſ	3	24 В пост. т.	H/O	H/0
	4	24 В пост. т. возвратный	H/O	H/0

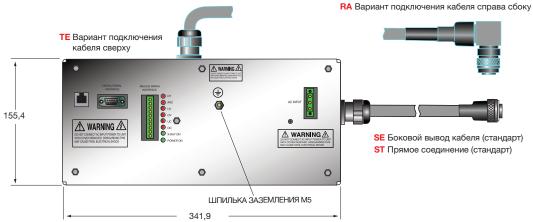
Очень важно убедиться, что на контакты 1 и 2 подается напряжение 24 В.

АНАЛОГ. ИНТЕРФЕЙС — 10-KOHT. PHOENIX CONTACT 1792605

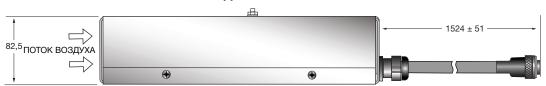
Nº	СИГНАЛ	ПАРАМЕТР
1	Включение рентг.	Приложить +24 В пост. т. для разрешения. Раз-
	излучения разрешено	мыкание/снятие +24 В пост. т. приведет к прекра-
		щению генерации рентгеновского излучения.
2	Включение рентг. излуче-	Заземление для системы блокировки
	ния разрешено, обратный	рентгеновского излучения.
3	Контакт удален	H/O
4	Контроллер	0-10 В пост. т. = от 0 до 100 % номинального
	напряжения (кВ)	выходного напряжения. Zout = 10 кОм
5	Земля лог. сигналов	Земля логических сигналов
6	Контроллер силы тока	0-10 В пост. т. = от 0 до 100 % номинального
	(MA)	выходного тока. Zout = 10 кОм
7	Сигнал неисправности	Открытый коллектор, высокий (разомкнут) = нет
		сбоя, 35 В пост. тока, 35 В пост. т., 10 мА макс.
8	Реле лампы ВН ВКЛ,	Н/Р сухие контакты. 50 В, макс. Рассчитан на
	H/P	ток не более 1 А, номинальная нагрузка 50 мА
9	Реле лампы ВН ВКЛ,	Общий провод для сухих контактов. 50 В макс. Рассчи-
	общ	тан на ток не более 1 А, номинальная нагрузка 50 мА
10	Реле лампы ВН ВКЛ,	Н/3 сухие контакты. 50 В, макс. Рассчитан на
	H/0	ток не более 1 А, номинальная нагрузка 50 мА

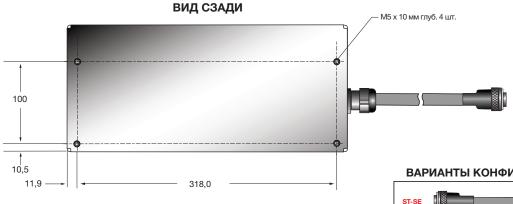
ЦИФРОВОЙ ИНТЕРФЕЙС RS-232 — 9-КОНТ. ВИЛКА РАЗЪЕМА ТИПА D

N₂	СИГНАЛ	ПАРАМЕТР
1	H/O	H/O
2	Передача данных	Соответствует EIA RS-232-C
3	Получение данных	Соответствует EIA RS-232-C
4	H/O	H/O
5	Земля логических сигналов	Земля логических сигналов
6	H/O	H/O
7	H/O	H/O
8	H/O	H/O
9	H/O	H/0


ЦИФРОВОЙ ИНТЕРФЕЙС ETHERNET 8-КОНТ. ГНЕЗДО RJ45

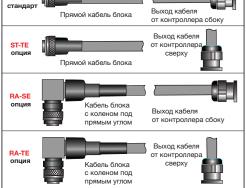
Nº	СИГНАЛ	ПАРАМЕТР
1	TX+	Передача данных +
2	TX-	Передача данных –
3	RX+	Прием данных +
4	H/0	Не используется
5	H/0	Не используется
6	RX-	Прием данных –
7	H/0	Не используется
8	H/O	Не используется




100/210 BT БЛОК УПРАВЛЕНИЯ

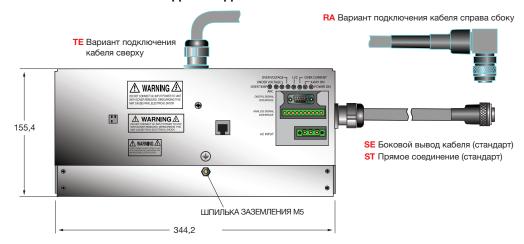
ВИД СПЕРЕДИ

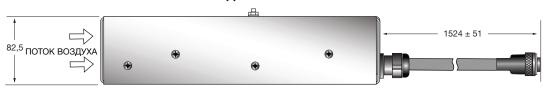
вид снизу



вид сбоку

вид сбоку


ВАРИАНТЫ КОНФИГУРАЦИИ КАБЕЛЯ



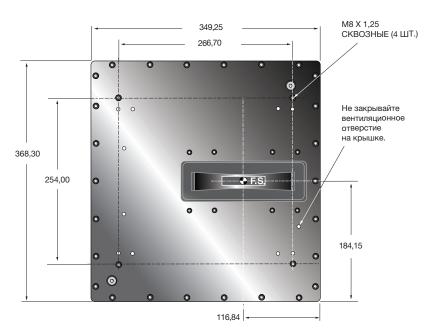
350/500 BT БЛОК УПРАВЛЕНИЯ

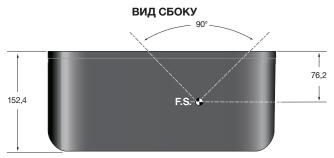
ВИД СПЕРЕДИ

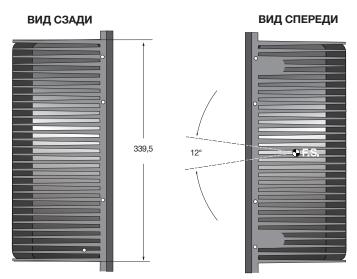
вид снизу

ВИД СЗАДИ М5 x 10 мм глуб. 4 шт. 100 10,5 13,1 318,0

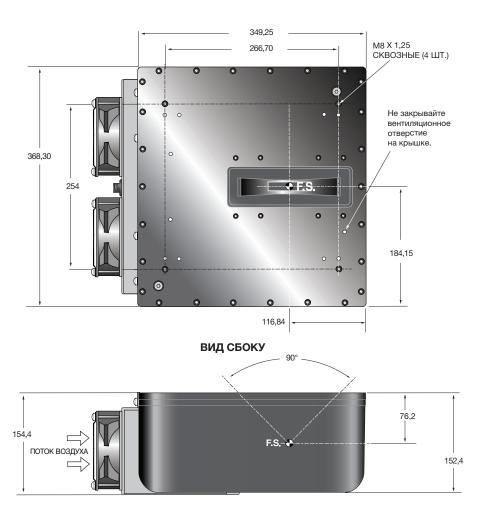
вид сбоку

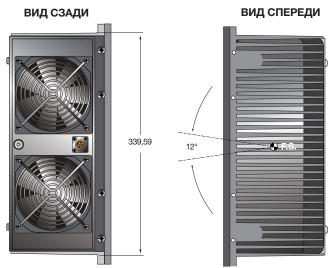

•

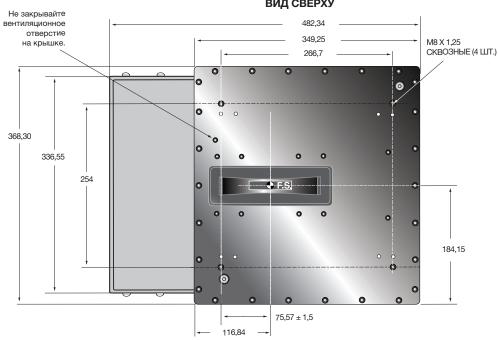

вид сбоку

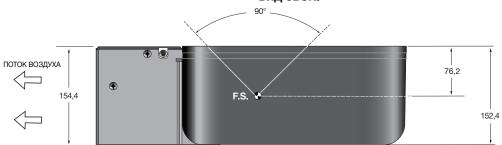


100 ВТ БЛОК ВИД СВЕРХУ

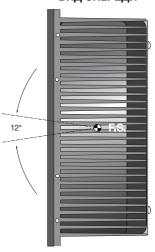





210 ВТ БЛОК ВИД СВЕРХУ



350/500 ВТ БЛОК ВИД СВЕРХУ



вид сбоку

ВИД СПЕРЕДИ

