MONOBLOCK® 80 KB, 320 BT

СТРАНИЦА 1 ИЗ 3

Источники рентгеновского излучения серии XRB80PN320 Monoblock® компании Spellman предназначены для использования в системах заказчиков и обеспечивают питание внутренней рентгеновской трубки напряжением до 80 кВ при мощности 320 Вт. Компактность и цифровой интерфейс RS-232 упрощают интеграцию XRB80PN320 в любую рентгеновскую систему. Стандартные модели поставляются с веерной геометрией пучка. Патентованная технология управления эмиссией обеспечивает высокую точность регулировки силы тока рентгеновской трубки и высокий уровень стабильности.

ТИПОВЫЕ ПРИМЕНЕНИЯ

Рентгеновская дефектоскопия: контроль качества пищевых продуктов, подтверждение уровня заполнения и системы безопасности

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Характеристики рентгеновской трубки:

Тип трубки: Стеклянная трубка, вольфрамовое зеркало,

материал фильтра: Ве

Фокальное пятно: 0,8 мм х 0,8 мм, 0,5 мм х 0,5 мм (IEC 336) Фильтр пучка: Алюминий 5052, 1,016 мм (\pm 0,254 мм); два

элемента из сплава 6061, 4,064 мм (\pm 0,127 мм) Асимметричный веерный пучок 105° \times 4°,

 80° x 10° , конический до 40°

Входное напряжение:

Геометрия пучка:

200-264 В переменного тока, 50/60 Гц, максимум 4,0 А

Напряжение рентгеновской трубки:

Номинальное напряжение рентгеновской трубки регулируется в пределах от 40 кВ до 80 кВ

Сила тока рентгеновской трубки:

0,5–4 мА в заданном диапазоне напряжения трубки

Мощность рентгеновской трубки:

320 Ватт макс. непрер.

Нестабильность напряжения:

Линия: ± 0.05 % при изменении напряжения в сети ± 10 % Нагрузка: \pm % при изменении нагрузки от 0,5 мА до 4 мА

Точность регулировки напряжения:

Измеряемое на рентгеновской трубке напряжение находится в пределах ±2 % от заданного значения

Время нарастания напряжения:

Время выхода на рабочий режим составляет <500 мс от 10 % до 90 % номинального выходного напряжения

Интегрированный высоковольтный источник, источник питания накала, рентгеновская трубка, окно выхода пучка и управляющая электроника

- Компактность и малый вес
- Возможность установки с любой ориентацией в пространстве
- Стандартный цифровой интерфейс RS-232

Перерегулирование напряжения:

В пределах 5 % номинального напряжения в течение <10 мс

Пульсации напряжения:

≤1 % пиковое от номинального напряжения при частоте <1 кГц

Нестабильность тока:

Линия: ±0,5 % при 50–100 % по напряжению

от номинального диапазона по входящей

ЛИНИИ

Нагрузка: ±0,5 % при 50–100 % по напряжению

от номинального диапазона по нагрузке

Точность силы тока:

Измеряемая на рентгеновской трубке сила тока находится в пределах 2 % от заданного значения

Время нарастания тока:

<500 мс от 10 % до 90 % номинального выходного значения

Защита от дуги:

4 дуги за 10 с = отключение

Конфигурация нити накала:

Встроенный привод переменного тока высокой частоты нити накала, оснащенный системой управления эмиссией с обратной связью

Аналоговый интерфейс:

Сигналы контроля от 0 до 10 В постоянного тока относительно земли

Цифровой интерфейс:

RS-232

Управляющее программное обеспечение:

Демонстрационный графический интерфейс для цифрового интерфейса RS-232 предоставляется на заказ для оценки с инженерной точки зрения.

Сигналы блокировки:

В цифровых режимах программирования работает аппаратная блокировка.

Рабочая температура:

от 0 °C до +40 °C

Температура хранения:

от -40 °C до +70 °C

Влажность:

От 10 % до 90 % отн. влажности, без конденсации

Охлаждение:

Теплообменник с вентилятором и маслонасосом, питание постоянным током

Разъем сети питания:

3-контактный Phoenix, № по каталогу 1829167

СТРАНИЦА 2 ИЗ 3

Входной линейный разъем:

3-контактный Phoenix, № по каталогу 1829167

Разъем цифрового интерфейса:

9-контактное гнездо разъема типа D

Разъем аналогового интерфейса:

10-контактный Phoenix, № по каталогу 1755503

Точка заземления:

Шпилька заземления на шасси (8-32)

Размеры:

См. чертеж

Macca:

54,4 кг максимум

Ориентация:

Возможность установки в любом положении

Утечка рентгеновского излучения:

Не более 0,5 мР/час на расстоянии 5 см от внешней поверхности согласно положению FDA 1020.40, том 21 Свода федеральных правил США, и OSHA 1020.96, том 29 Свода федеральных правил США.

Соответствие нормативным документам:

Устройства соответствуют Директиве по электромагнитной совместимости EEC, Директиве по низковольтным устройствам EEC, UL/CUL (файл E235530).

ВХОД ПИТАНИЯ ПЕРЕМЕННОГО TOKA JB11 3-KOHTAKTHЫЙ РАЗЪЕМ PHOENIX

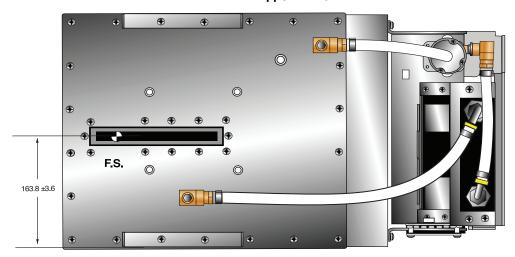
N	lo	СИГНАЛ	ПАРАМЕТРЫ
	1	Линия	200–264 В пер.тока
	2	GND	200–264 В пер.тока
	3	Нейтраль	Нейтраль

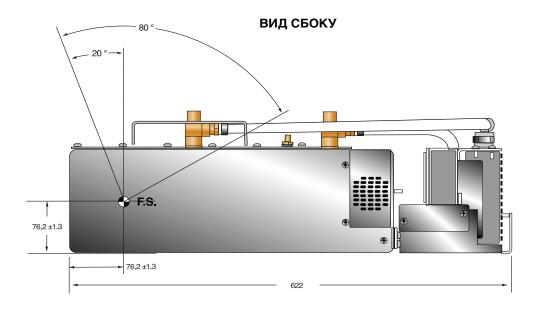
ЦИФРОВОЙ ИНТЕРФЕЙС RS-232 JB16 9-КОНТАКТНОЕ ГНЕЗДО РАЗЪЕМА ТИПА D

Nº	СИГНАЛ	ПАРАМЕТРЫ
1	N/C	Не подключен
2	TX	Передача сигнала по интерфейсу RS-232
3	RX	Прием по интерфейсу RS-232
4	N/C	Не подключен
5	SGND	Земля логических сигналов
6	N/C	Не подключен
7	N/C	Не подключен
8	N/C	Не подключен
9	N/C	Не подключен

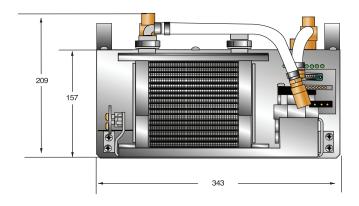
АНАЛОГОВЫЙ КОНТРОЛЬ— JB11 10-КОНТАКТНЫЙ РАЗЪЕМ PHOENIX

Nº	СИГНАЛ	ПАРАМЕТРЫ
1	Включение рентгеновского излучения разрешено	+24 В пост. тока = включение рентгеновского излучения разрешено 0 В пост. тока/разомкнут = рентгеновское излучение запрещено
2	RTN	Обратный контур сигнала
3	N/C	Не подключен
4	Контроллер напряжения	От 0 до 10 В пост. тока = от 0 до 100 кВ, Zout = 10 кОм
5	SGND	Обратный контур сигнала
6	Контроллер силы тока (мА)	От 0 до 10 В пост. тока = от 0 до 5 мА, Zout = 10 кОм
7	Сбой	Открытый коллектор, высокий (разомкнут) = нет сбоя, 35 В пост. тока при 10 мА макс.
8	Лампа ВН ВКЛ, реле не подкл.	Нормально-разомкнутое реле, 50 В пост. тока при 1 А максимум
9	Лампа ВН ВКЛ, общий контур реле	Общий контур реле, 50 В пост. тока при 1 А максимум
10	Лампа ВН ВКЛ, реле не подкл.	Нормально-замкнутое реле, 50 В пост. тока при 1 А максимум




MONOBLOCK® 80 KB, 320 BT

СТРАНИЦА З ИЗ З


РАЗМЕРЫ: Миллиметры

ВИД СВЕРХУ

вид снизу

