СТРАНИЦА 1 ИЗ 3

Источник рентгеновского излучения серии XRB201 Monoblock® компании Spellman предназначены для интеграции в системы заказчика и обеспечивают питание внутренней рентгеновской трубки напряжением до 160 кВ при мощности 200 Вт. Универсальный вход питания, компактность, стандартный аналоговый интерфейс и цифровой интерфейс RS-232 упрощают встраивание XRB201 в любые рентгеновские системы. В стандартном исполнении выпускаются блоки с веерным или коническим пучком излучения. Патентованная схема управления эмиссией обеспечивает отличную стабилизацию тока рентгеновской трубки, а также исключительную стабильность и производительность устройства.

ТИПОВЫЕ ПРИМЕНЕНИЯ

Рентгеновская дефектоскопия: контроль качества пищевых продуктов, контроль уровня заполнения, системы безопасности.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Характеристики рентгеновского излучения:

Тип трубки: стеклянная трубка, вольфрамовое зеркало,

материал фильтра: Ве

Фокальное пятно: 0,8 мм x 0,8 мм, 0,5 мм x 0,5 мм (IEC 336) Фильтр: 0,4064–2,032 мм алюминий, 3,175 мм Ultem Геометрия луча: асимметричный веерный до 80° x 30°,

конический до 40°

Входное напряжение:

90-264 В переменного тока, 50/60 Гц, максимум 5 А

Напряжение рентгеновской трубки:

Номинальное напряжение рентгеновской трубки регулируется в пределах от 80 кВ до 160 кВ

Сила тока рентгеновской трубки:

0,1-1,2 мА в заданном диапазоне напряжения трубки

Мощность рентгеновской трубки:

200 Ватт макс. непрер.

Нестабильность напряжения:

Линия: ±0,1 % при изменении напряжения в сети ±10 %

от номинального входного напряжения

Нагрузка: $\pm 0,1$ % при изменении нагрузки от 0,1 мА до 1,2 мА

Точность регулировки напряжения:

Измеряемое на рентгеновской трубке напряжение находится

в пределах ±1% от заданного значения

• Интегрированный высоковольтный источник, источник питания накала, рентгеновская трубка, окно выхода пучка и управляющая электроника

- Компактность и малый вес
- Универсальный вход, коррекция коэффициента мощности
- Возможность установки с любой ориентацией в пространстве
- Аналоговый мониторинг и стандартный цифровой интерфейс RS-232

Время нарастания напряжения:

Время выхода на рабочий режим составляет 1 с при нарастании от 10 % до 90 % номинального выходного напряжения

Выброс напряжения:

В пределах 5 % номинального напряжения за <10 мс

Пульсации напряжения:

0,2 % пиковое от номинального напряжения при частоте ≤1 кГц

Нестабильность тока:

Линия: $\pm 0,1$ % при изменении напряжения в сети ± 10 % от номинального Нагрузка: $\pm 0,5$ % при $80{\text -}160$ кВ, $0,1{\text -}1,2$ мА

Точность силы тока:

Измеряемая на рентгеновской трубке сила тока находится в пределах $\pm 1\%$ от заданного значения

Время нарастания тока:

1 с при нарастании от 10 % до 90 % номинального выходного значения

Защита от дуги:

4 дуги за 10 с со временем гашения 200 мс = отключение

Конфигурация нити накала:

Встроенный привод переменного тока высокой частоты нити накала, оснащенный системой управления эмиссией с обратной связью.

Аналоговый интерфейс:

Сигналы от 0 до 10 В постоянного тока относительно земли

Цифровой интерфейс:

Интерфейс RS-232

Управляющее программное обеспечение:

Для инженерных вычислений по требвоанию предоставляется демонстрационный графический интерфейс для цифрового интерфейса RS-232.

Блокировка/сигналы:

В наличии функция аппаратной блокировки

Рабочая температура: от 0 °C до +40 °C **Температура хранения:** от -40 °C до +70 °C

Влажность:

От 10 % до 95 % отн. влажности, без конденсации

Охлаждение:

Конвекционное/внешнее принудительное воздушное охлаждение для поддержания температуры бака <55 °C

СТРАНИЦА 2 ИЗ 3

Разъем сети питания:

3-контактный Phoenix, № по каталогу 1829167

Разъем аналогового интерфейса:

10-контактный Phoenix Contact, № по каталогу 1755503

Разъем цифрового интерфейса:

9-контактное гнездо разъема типа D

Точка заземления:

Шпилька заземления на шасси (8-32)

Размеры:

См. чертеж

Macca:

40,5 кг

Ориентация:

Возможность установки в любом положении

Утечка рентгеновского излучения:

Не более 0,5 мР/час на расстоянии 5 см от внешней поверхности согласно положению FDA 1020.40, том 21 Свода федеральных правил США, и ОSHA 1020.96, том 29 Свода федеральных правил США.

Соответствие нормативным документам:

Устройства соответствуют Директиве по электромагнитной совместимости ЕЕС, Директиве по низковольтным устройствам EEC, UL/CUL (файл E235530).

Особые возможности/требования:

Высокая стабильность выходного рентгеновского излучения: Колебания мощности дозы <2 %

ВХОД ПИТАНИЯ ПЕРЕМЕННОГО ТОКА 3-КОНТАКТНЫЙ РАЗЪЕМ PHOENIX JB1

N∘	СИГНАЛ	ПАРАМЕТРЫ
1	Линия	90–264 В пер.тока
2	GND	Заземление шасси
3	Нейтраль	Нейтраль

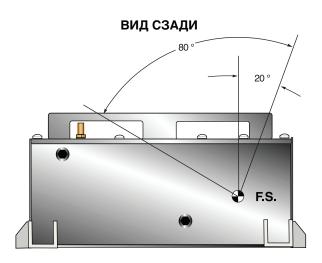
ЦИФРОВОЙ ИНТЕРФЕЙС RS-232— ЈВ16 9-КОНТАКТНОЕ ГНЕЗДО РАЗЪЕМА ТИПА D

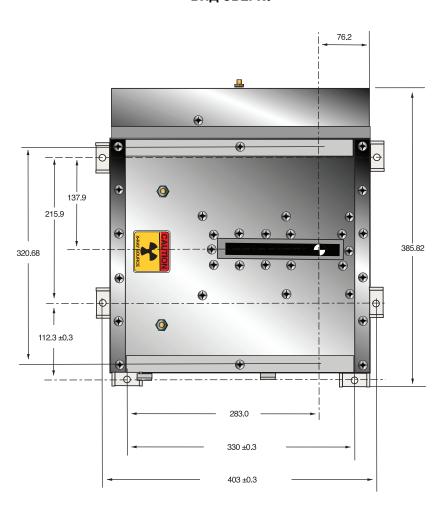
Nº	СИГНАЛ	ПАРАМЕТРЫ
1	N/C	Не подключен
2	TD	Передача данных
3	RD	Прием данных
4	N/C	Не подключен
5	SGND	Сигнальная земля
6	N/C	Не подключен
7	N/C	Не подключен
8	N/C	Не подключен
9	N/C	Не подключен

АНАЛОГОВЫЙ ИНТЕРФЕЙС— 10-КОНТАКТНЫЙ РАЗЪЕМ PHOENIX JB15

Nº	СИГНАЛ	ПАРАМЕТРЫ
1	Сигнал рентгеновского излучения	+24 В пост. тока = рентген ВКЛ, 0 В пост. тока/разомкнут = рентген ОТКЛ, Zin=2,2 кОм
2	Возврат сигнала рентг. излучения	Обратный контур сигнала
3	Не используется	Не подключен
4	Контроллер кВ	От 0 до 10 В пост. тока = от 0 до 178 кВ, Zout = 10 кОм
5	Сигнальная земля	Сигнальная земля
6	Контроллер мА	От 0 до 10 В пост. тока = от 0 до 1,5 мА, Zout = 10 кОм
7	Сигнал сбоя	Открытый коллектор, высокий (разомкнут) = нет сбоя, 35 В пост. тока 10 мА максимум
8	ВН ВКЛ, нормально разомкнутое реле лампы	Нормально-разомкнутое реле, 50 В пост. тока при 1 А максимум
9	ВН ВКЛ, общий контур реле лампы	Общий контур реле, 50 В пост. тока при 1 А максимум
10	ВН ВКЛ, нормально замкнутое реле лампы	Нормально-замкнутое реле, 50 В пост. тока при 1 А максимум

СВЕТОДИОДНЫЕ ИНДИКАТОРЫ


ИНДИКАТОР	НАЗВАНИЕ СИГНАЛА	СОСТОЯНИЕ Включен при
LED 1	ОТ	Превышение температуры
LED 2	ARC FLT	Отказ из-за возникновения дуги
LED 3	UV	Возникновение пониженного напряжения
LED 4	OV	Возникновение повышенного напряжения
LED 5	UC	Возникновение пониженной силы тока
LED 6	00	Возникновение повышенной силы тока
LED 7	X-RAY ON	Рентгеновское излучение включено
LED 8	PWR	Питание включено


СТРАНИЦА З ИЗ З

РАЗМЕРЫ: Миллиметры

ВИД СВЕРХУ

www.spellmanhv.com

128081-001 REV. J