СТРАНИЦА 1 ИЗ 2

Новая серия MPD от компании Spellman — это семейство высоковольтных модулей мощностью 10 Вт, обеспечивающих выходные напряжения в диапазоне от 2,5 до $20~\mathrm{KB}$.

Серия MPD представлена высокопроизводительными устройствами, сконструированными с использованием разработанной компанией Spellman гибридной топологии линейных и переключаемых методов преобразования энергии, обеспечивающих более низкий уровень шума и более высокую производительность. Серия MPD обеспечивает превосходные технические характеристики пульсаций и стабильности при небольшой занимаемой площади. Кроме того, устройства серии MPD имеют вход дифференциального усилителя для сигнала программирования, позволяющего повысить устойчивость к внешним шумам и обработать любые нежелательные отклонения.

Полнофункциональный дистанционный пользовательский интерфейс подключается с помощью 15-контактного разъема типа D или через последовательный интерфейс RS-232 или RS-485. Система внутренних межсоединений обеспечивает возможности как полностью аналогового, так и полностью цифрового управления.

Запатентованная высоковольтная технология компании Spellman совместно со схемами поверхностного монтажа сделали возможным появление компактного и легкого модуля, имеющего два варианта исполнения: с положительной и отрицательной полярностью, идеальных для применения в системах заказчика.

ТИПОВЫЕ ПРИМЕНЕНИЯ

Фотоэлектронные умножители Электростатическая печать

Источники для электронного и ионного излучения

 Сцинтилляторы
 Детекторы электронных умножителей

 Масс-спектрометрия
 Детекторы на микроканальных пластинах

Электростатические линзы Ядерное приборостроение

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Входное напряжение:

+24 В пост. тока, ±2 В пост. тока

Входной ток:

≤1 А максимум

Выходное напряжение:

доступно 5 моделей от 2,5 до 20 кВ

Выходная полярность:

Положительная или отрицательная, указывается в заказе

Мощность:

10 Ватт макс.

Нестабильность напряжения:

Линия: 10 ppm на 1 В изменения напряжения линии Нагрузка: 10 ppm для нагрузки от 0 до 100 %

Ограничение по токам:

110% номинального выходного тока

- Высокопроизводительный компактный модуль
- Программирование напряжения по цифровым или дифференциальным аналоговым входам
- Управление через интерфейс RS-232 или RS-485 в стандартной комплектации
- Выходная мощность 10 Вт
- Контроль напряжения и силы тока
- Высокая стабильность, низкий уровень пульсации
- Встроенный цифровой осциллограф обеспечивает исключительно низкий уровень пульсации и шумов (вплоть до диапазона 1/f)

Руководство пользователя
Руководство по выбору MPD и MPS

Протокол связи

Пульсации:

См. таблицу «Дрейф, пульсации и шумы»

Стабильность:

После часового прогрева.

10 ррт/час

25 ppm/8 часов

500 ppm/1000 часов

Температурный коэффициент:

10 ррт на градус С

Защита:

Защита от дугового разряда и короткого замыкания. Не рассчитано на работу в условиях постоянной дуги

Условия окружающей среды:

Диапазон температур:

Рабочая: 0-50 °C

Температура хранения: -35-85 °C

Влажность:

от 20 % до 85 % без конденсации.

Охлаждение:

Конвекционное

Размеры:

2,5–10 kB: 1,18" B x 2,75" \coprod x 5,12" Γ (30 km x 70 km x 130 km) 15–20 kB: 1,18" B x 2,75" \coprod x 6,50" Γ (30 km x 70 km x 165 km)

Macca:

2.5/5/10 kB:

14,82 унций (420 г)

15/20 kB:

22,09 унций (650 г)

Разъем интерфейса:

15-контактная вилка разъема типа D

Выходной разъем:

Экранированный кабель HRG58 длиной 39,4" (1 м) с разъемом с защитой от разъединения

Высоковольтный кабель входит в комплект поставки.

Соответствие нормативным документам:

Признан соответствующим требованиям UL (RC), файл E354595. Соответствует IEC/UL 61010-1 «Требования к безопасности измерительного, контрольного и лабораторного электрооборудования»; CAN/CSA-C22.2 No.61010-1. Маркировка СЕ по EN 61010-1. Маркировка UKCA по BS EN 61010-1. Соответствует требованиям RoHS. Поскольку устройство предназначено для включения в пользовательскую систему, оно не испытано по каким-либо конкретным стандартам в отношении электромагнитной совместимости. Пользователь должен будет принять разумные меры предосторожности в отношении ЭМС при проектировании устройства и проверить общие характеристики системы на соответствие любым применимым стандартам в отношении ЭМС.

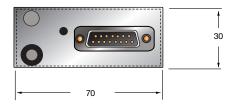
ТАБЛИЦА ВЫБОРА МОДУЛЕЙ МРО

Модель	Выходное напряжение	Выходной ток	Пульсации (Vpp)
MPD2.5*10/24	2,5 кВ	4,00 мА	См. таблицу ниже
MPD5*10/24	5 кB	2 мА	См. таблицу ниже
MPD10*10/24	10 кВ	1 мА	См. таблицу ниже
MPD15*10/24	15 кВ	0,66 мА	См. таблицу ниже
MPD20*10/24	20 kB	0,5 мА	См. таблицу ниже

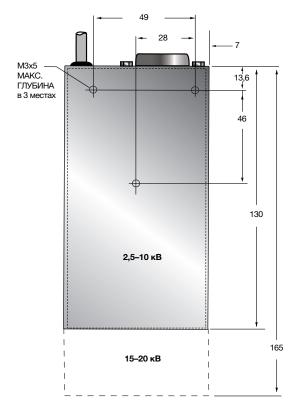
^{*}Укажите полярность — «Р» для положительной полярности,

ДРЕЙФ, ПУЛЬСАЦИИ И ШУМЫ ДЛЯ БЛОКОВ МРО

Модель	3–30 мГц	30 мГц – 3 Гц	3–30 Гц	30-300 Гц	300 Гц – 30 кГц	30 кГц – 3 МГц
MPD2.5	10 мВ	10 мВ	10 мВ	5 мВ	5 мВ	5 мВ
MPD5	10 мВ	10 мВ	10 мВ	10 мВ	10 мВ	10 мВ
MPD10	20 мВ	20 мВ	20 мВ	20 мВ	20 мВ	20 мВ
MPD15	30 мВ	30 мВ	30 мВ	30 мВ	30 мВ	30 мВ
MPD20	40 мВ	40 мВ	40 мВ	40 мВ	40 мВ	40 мВ


ВНЕШНИЙ ИНТЕРФЕЙС MPD — 15-КОНТАКТНАЯ ВИЛКА РАЗЪЕМА ТИПА D

	KOHT.	СИГНАЛ	ПАРАМЕТРЫ СИГНАЛОВ
ſ	1	Заземление питания	Заземление
ı	2	Вход +24 В пост. тока	+24 В пост. тока, 1 А макс.
Ī	3	Выход контроллера напряжения	Контроль напряжения от 0 до 10 В пост. тока = от 0 до
1			100% выходного напряжения, ±1%, с проводным соеди-
L			нением с землей логических сигналов, Zout = 10 кОм
	4	Опорное выходное напряжение	+10 В пост. тока, 1 мА макс.
1	5	Вход программирования напр.	от 0 до 10 В пост. тока = от 0 до 100 % номинального
L			выходного напряжения ±1%, Zin = 10 МОм
1	6	Выход дифференц. усилителя	от 0 до 10 В пост. тока = от 0 до 100 %
L		программирования напряжения	номинального выходного напряжения, Zout = 10 кОм
1	7	Вход дифференц. усилителя	0 до +10 В пост. тока между контактами 7 и 9 =
1		программирования напряжения	
1		вход усилителя —	0 до 100 % номинального выходного напряжения,
L		положительная полярность	диод закорочен на землю, Zin = 38 кОм
1	8	Выход контроллера тока	Контроль напряжения от 0 до 10 В пост. тока = от 0 до
1			100% выходного напряжения, $\pm 1\%$, с проводным соеди-
			нением с землей логических сигналов, Zout = 10 кОм
1	9	Вход дифференц. усилителя	0 до +10 В пост. тока между контактами 7 и 9 =
1		программирования напряжения	
1		вход усилителя —	0 до 100% номинального выходного напряжения,
L		отрицательная полярность	диод закорочен на землю, Zin = 38 кОм
1	10	Выход цифрового	от 0 до 10 В пост. тока = от 0 до 100 % номинального
L		программирования напряжения	выходного напряжения, Zout = 10 кОм
L	11	Заземление аналогового сигнала	Земля логических сигналов для контроля и управления
1	12	Вход разрешающего сигнала	Низкий уровень = разрешен, совместим с ТТЛ,
			CMOS, открытым коллектором
1	13	Цифровой режим	Конфигурация с RS-232 или RS-485, низкий
			уровень = RS-485, разомкнуто = RS-232
1	14	RS-232 TxD/RS-485 (-)	Передача данных (выход) — проводное соединение
			с контактом 1 или инвертирование RS-485
1	15	RS-232 RxD/RS-485 (+)	Передача данных (вход) — проводное соединение
1			с контактом 1 или НЕ инвертирование RS-485


Цифровое управление — соединение контактов 5 и 10 Аналоговое управление — соединение контактов 5 и 6

РАЗМЕРЫ: мм

ВИД СПЕРЕДИ

вид снизу

вид сбоку

[«]N» — для отрицательной. Возможно изготовление блоков на заказ.