

Рентгеновский источник MONOBLOCK® MMB125PN3.5 для применения в медицине от компании Spellman отличается малым временем нарастания напряжения, менее 1 мс, что делает этот источник идеальным решением для самых сложных или узкоспециализированных задач, в частности он идеально подходит для визуализация сосудов. Воспользуйтесь 70-летним опытом высоковольтных инноваций Spellman с этим рентгеновским источником MMB125PN3.5 Monoblock®, специально разработанным для производителей аппаратов «С-Дуга». Наши передовые технологии и опыт проектирования в сочетании с глубиной производственных возможностей делают Spellman мудрым выбором для ваших требований к Monoblock®.

Сверхбыстрые источники серии MMB от компании Spellman — это практическое воплощение технологического совершенства, направленное на повышение эксплуатационных характеристик рентгеновского излучения, позволяя сократить дозовую нагрузку, получаемую пациентом. Импульсная флюороскопия повышает возможности денситометрии и улучшает анализ сложных анатомических структур, что позволяет еще больше сократить необходимую дозу излучения. Времени нарастания напряжения менее 1 мс, для источников серии ММВ — это один из лучших результатов по скорости в отрасли.

ОСНОВНОЕ ПРИМЕНЕНИЕ

Комплектация рентгеновских аппаратов типа «С-дуга» для производителей оригинального оборудования

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Характеристики рентгеновского излучателя:

Фокусное пятно: 0,5 мм для малого фокуса

16° Угол мишени:

Материал мишени: Фильтр излучения: 0,8 mm Al

Геометрия пучка: Утечка рентгеновского < 1 мГр/ч на расстоянии излучения: 1 м от поверхности блока

Макс, ток накала:

Частота преобразования

генератора накала: Теплоотдача анода: 35,5 кДж

Максимальное рассеивание тепла анода:

Расстояние между фокусным

пятном и окном выхода рентгеновского излучения Расположение фокусного

пятна:

1,6 мм для большого фокуса

Вольфрам

См. схематический чертеж

4.3 A

20 кГц

600 BT

45 MM

См. габаритный чертеж, дополнительное оно отмечено на крышке блока.

Интегрированный источник высокого напряжения. источник питания накала, рентгеновская трубка, окно выхода пучка и управляющая электроника

Компактность и малый вес

Малое время нарастания напряжения, менее 1 мс. делает этот источник идеальным решением для самых сложных задач

Специально разработан для комплектации рентгеновских аппаратов типа «С-дуга» для производителей оригинального оборудования

Входной источник питания:

Входное напряжение: 190-264 В пер. тока, однофазный,

50/60 Гц

Непрерывный ток: ≤9 А при 600 Вт, 220 В Пиковый ток: ≤34 А при 3500 Вт, 220 В

Напряжение рентгеновской трубки:

Рабочий диапазон: от 40 до 125 кВ Время нарастания напряжения: <1 мс (от 10% до 90%)

≤0,05 согласно IEC60601-2-54 Воспроизводимость:

Пульсации напряжения: Точность установки напряжения для флюороскопии: ±5% Выбросы по напряжению: <5%

Сила тока рентгеновской трубки:

от 0,2 до 6 мА (малое фокусное пятно) Флюороскопия: Импульсная флюороскопия: от 0,5 до 10 мА (малое фокусное пятно) Рентгенография: от 10 до 40 мА (большое фокусное пятно)

Точность установки силы тока: ±10 %

Максимальные рабочие условия:

Непрерывная флюороскопия

6 мА в течение 5 минут низкой дозы:

Непрерывная флюороскопия

высокой дозы:

Импульсная флюороскопия: 0,5 кадр/с, 1 кадр/с, 2 кадр/с,

4 кадр/с, 8 кадр/с, 15 кадр/с, 25 кадр/с, 30 кадр/с в течение 2 мин

10 мА в течение 2 минут

нижнее значение 40 мс или Продолжительность импульса:

коэффициент загрузки 50 % Рентгенография: Однократная экспозиция, большое фокусное пятно, 0,1 с при 3500 Вт

Максимальное рассеивание

тепла анода:

Средняя мощность: 600 Вт в течение 5 минут

Количество теплоты в блоке: не менее 675 тысяч тепловых единиц

600 Bt

Макс. скорость охлаждения: 150 Вт

Защита по току рентгеновской трубки:

Перегрузка по току (высокое значение тока): точка аварийного отключения установлена на 15% выше максимального номинального тока или на 15% выше программируемого значения выходного тока в течение более 50 мс.

Минимальный ток (высокое значение тока): точка аварийного отключения установлена на 15% ниже программируемого значения выходного тока в течение более 50 мс.

Перегрузка по току (низкое значение тока): точка аварийного отключения установлена на 20% выше максимального номинального тока или на 20% выше программируемого значения выходного тока в течение более 50 мс.

Минимальный ток (низкое значение тока): точка аварийного отключения установлена на 20% ниже программируемого значения выходного тока в течение более 50 мс.

Защита рентгеновской трубки по напряжению:

Перенапряжение (высокое значение напряжения): точка аварийного отключения наступает тогда, когда напряжение превышает 137,5 кВ в течение более 10 мс или установлена на 10 % выше программируемого значения выходного напряжения в течение более 30 мс.

Минимальное напряжение (низкое значение напряжения): точка аварийного отключения установлена на 10% ниже программируемого значения выходного напряжения для периода дольше 50 мс.

Защита рентгеновской трубки от дугового пробоя:

Защита от пробоя: устройство будет обнаруживать пробой, но высокое напряжение не будет отключаться; однако, если возникнет множество дуговых разрядов (4 пробоя за 10 секунд), устройство будет отключено.

Защита от превышения температуры:

Превышение температуры: точка аварийного отключения по превышению температуры крышки блока должна быть в пределах 60 °C \pm 5 °C; точка отключения по превышению температуры масла блока должна быть установлена на 65 °C.

 Рабочая температура:
 от 0 до +40 °C

 Температура хранения:
 от −20 до +70 °C

 Высота над уровнем моря:
 от 0 до 2438 метров

Влажность: от 5 до 95 % без конденсации

Размеры:

Рентгеновский блок: 310 мм \times 158 мм \times 145 мм см. габаритный чертеж Контроллер: 380 мм \times 270 мм \times 83 мм см. габаритный чертеж

Macca:

 Рентгеновский блок:
 13 кг

 Контроллер:
 4,5 кг

Соответствие нормативным документам:

Соответствует требованиям стандартов:

IEC 60601-1:2005+A

Изделия медицинские электрические. Часть 1. Общие требования безопасности с учетом основных функциональных характеристик.

IEC 60601-1-2

2007 Изделия медицинские электрические. Часть 1-2. Общие требования безопасности с учетом основных функциональных характеристик. Дополнительный стандарт: Электромагнитная совместимость — Требования и испытания.

IEC 60601-1-3

2008 Изделия медицинские электрические. Часть 1-3. Общие требования безопасности с учетом основных функциональных характеристик. Дополнительный стандарт: Защита от излучения в диагностических рентгеновских аппаратах.

IEC 60601-2-54

2009 Изделия медицинские электрические. Часть 2. Частные требования безопасности с учетом основных функциональных характеристик к рентгеновским аппаратам для рентгенографии и рентгеноскопии.

Электромагнитная совместимость

Разработан для соответствия требованиям IEC к медицинским компонентам. (Примечание. Может потребоваться внешний фильтр электромагнитных помех.)

RoHS

Контроллер и блок в сборе соответствуют требованиям RoHS.

РАЗЪЁМ ПИТАНИЯ СЕТИ ПЕРЕМЕННОГО ТОКА — ТЕ: 1-350943-0

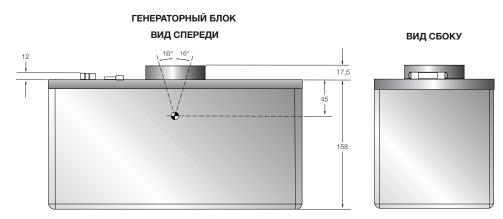
KOHT.	СИГНАЛ	ПАРАМЕТРЫ
1	Заземление	Заземление
2	Вход переменного тока 1	190–264 В пер. тока, однофазный,
		50/60 Гц, макс. 34 А
3	Вход переменного тока 2	190–264 В пер. тока, однофазный,
		50/60 Гц, макс. 34 А

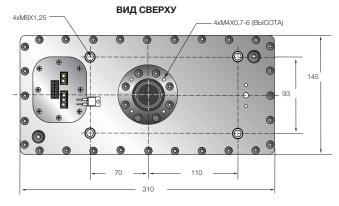
Примечание. Контакт заземления предусмотрен на корпусе

ЦИФРОВОЙ ИНТЕРФЕЙС — 9-КОНТАКТНОЕ ГНЕЗДО РАЗЪЕМА ТИПА D ТЕ: 5747844-5

KOHT.	СИГНАЛ	ПАРАМЕТРЫ
1	NC	Не подключено
2	RS-232 TX Out	Передача сигнала по интерфейсу RS-232
3	RS-232 RX In	Прием по интерфейсу RS-232
4	NC	Не подключено
5	Заземление RS-232	Заземление от логических цепей
		передатчика RS-232
6	NC	Не подключено
7	NC	Не подключено
8	NC	Не подключено
9	NC	Не подключено

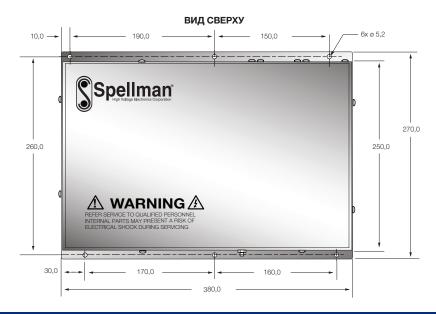
АНАЛОГОВЫЙ ИНТЕРФЕЙС — 15-КОНТАКТНОЕ ГНЕЗДО РАЗЪЕМА ТИПА D TE: 5747845-5


конт.	СИГНАЛ	ПАРАМЕТРЫ
1	GND	Земля логических сигналов
2	Выходной сигнал +5 В пост. тока	+5 В пост. тока, 100 мА (макс.)
3	Prep	Пользовательский сигнал (замыкание контактов) для оповещения генератора о запуске последовательности экспозиции. После подачи этого сигнала параметры экспозиции блокируются и становятся недоступными для изменения. Подключение к контакту 14. Закрыто = режим PREP, катодная нить переводится в режим прогрева
4	Готов	Генератор готов к запуску постоянного рентгеновского облучения. Открытый коллектор. Низкий/активный = Готов
5	Экспозиция:	Пользовательский сигнал (замыкание контактов), передаваемый на генератор для испускания рентгеновского излучения. Производится подъем параметров питания на нить накала, после завершения высокое напряжения. Подключение к контакту 14. Закрыто = Облучение
6	Источник рентге- новского излучения включен на 75%	Транзисторный выход, сообщающий о включенном рентгенов- ском излучении до уровня в 75% от уставки напряжения в кВ
7	Источник рентге- новского излуче- ния включен	Транзисторный выход, сообщающий о включенном рентгеновском излучении до уровня уставки напряжения в кВ
8	Отключение источника рентгеновского излучения	Пользовательский сигнал, передаваемый на генератор для быстрого отключения и включения подачи высокого напряжения в режиме последовательности экспозиций. Низкий/активный = Отключение питания высокого напряжения
9	NC	Не подключено
9	Статус сбоя генератора ВГ	Сигнал генератора, указывающий на сбой генератора. Транзи- сторный выход с открытым коллектором. Низкий/активный = сбой
10	Контроллер напряжения	Сигнал от генератора. 0–10 B = 0–140 кВ
11	Контроллер силы тока (мА)	Сигнал от генератора. Большой фокус: 0–10 B = 0-50 мА. Малый фокус: 0–5 B = 0–10 мА
12	Контроллер силы тока в нити накала	Сигнал от генератора. 0–10 В = 0–6 А
13	Заземление контроллера	Заземление для опорного напряжения сигналов контроля
14	Выходное на- пряжение +24 В постоянного тока	Для подключения реле управления, сигналы PREP и EXPOSURE
15	Экран/земля	Для подключения экрана интерфейсного кабеля к заземлению корпуса генератора



MONOBLOCK® 40-125 KB 3,5 KBT

СТРАНИЦА З ИЗ З


РАЗМЕРЫ в миллиметрах [мм]

БЛОК УПРАВЛЕНИЯ ВИД СПЕРЕДИ

