

• Плавающий программируемый выход 3 кВ

• Изоляция выхода до 15 кВ

- Высокая стабильность, низкий уровень пульсации
- Контроль выходного напряжения
- Компактный экранированный металлический корпус
- Защита от дугового разряда и короткого замыкания

Модульные источники питания Spellman серии МСР — это высокостабилизированные преобразователи постоянного тока с плавающим напряжением 3 кВ на выходе и изоляцией выхода до 15 кВ. Низкий уровень пульсации на выходе делает эти устройства незаменимыми незаменимыми в детекторном оборудовании для масс-спектроскопии, в том числе для электронных умножителей (ЭУ), микроканальных пластин (МКП), канальных электронных умножителей.

Модуль, рассчитанный на +3 кВ при 330 мкА выпускается в экранированном металлическом корпусе. Блок имеет функцию дистанционного программирования напряжения и контроля напряжения, обеспечивает низкий уровень наводимых пульсаций при работе с источниками питания систем смещения. Модуль МСР легко адаптируется к требованиям заказчика по улучшенным показателям пульсаций, повышенной стабильности и настраиваемым по требованию выходным контактам.

ТИПОВЫЕ ПРИМЕНЕНИЯ

Детекторы масс-спектрометрии

Детекторы на микроканальных пластинах Электронные умножители Канальные электронные умножители

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Входное напряжение:

+24 В пост. тока, ±0,5 В

Входной ток:

600 мА максимум

Выходное напряжение:

от +100~B до $+3~\kappa B$, с плавной регулировкой во всем выходном диапазоне

Выходной ток:

330 мкА макс.

Полярность:

положительная

Напряжение изоляции:

Суммарное до 15 кВ относительно земли (сопротивление между каждым выходом и заземлением 600 МОм)

Нестабильность напряжения в сети:

≤ 0,01 % при изменении входного напряжения на 1 В

Нестабильность по нагрузке:

≤ 0,1 % изменении нагрузки с нулевой до полной

Программирование напряжения:

от 0 до 10 B = от 0 до 100 % номинального выходного напряжения

Контроллер напряжения:

от 0 до 5 B = от 0 до 100 % номинального выходного напряжения

Точность:

 ± 1 % от 10 % до 100 % на выходе. Ниже 10 % параметры точности не гарантируются

Пульсации:

≤ 0,1 % В (амплитуда), от 0,1 Гц до 1 МГц

Стабильность:

≤ 1000 ppm/час в условиях непрерывной работы после часового прогрева

Температурный коэффициент:

≤ 300 ppm на °С

Условия окружающей среды:

Диапазон температур: рабочий: от 0 °C до 40 °C хранения: от –40 °C до 85 °C Влажность: от 10 % до 90 % без конденсации

Охлаждение:

Конвекционное

Размеры:

38 MM \times 104 MM \times 171 MM (B \times \coprod \times Γ)

Macca:

1 кг

Разъем интерфейса/питания:

9-контактная вилка разъема типа D

Выходной высоковольтный разъем:

Положительное ВН: кабельный вывод 750 мм,

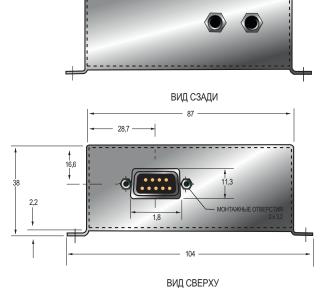
коаксиальный BB кабель URM76

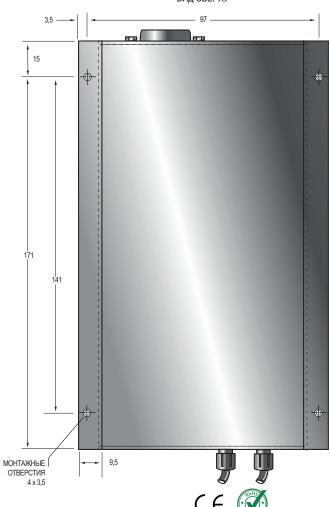
Отрицательное ВН: кабельный вывод 750 мм,

коаксиальный BB кабель URM76

Соответствие нормативным документам:

Устройства соответствуют Директиве по электромагнитной совместимости EEC, Директиве по низковольтным устройствам EEC и RoHS.


СТРАНИЦА 2 ИЗ 2


РАЗМЕРЫ: Миллиметры

РАЗЪЕМ ИНТЕРФЕЙСА/ПИТАНИЯ МОДУЛЯ МСР

JB1	СИГНАЛ	ПАРАМЕТРЫ СИГНАЛОВ
1	Земля логических сигналов	Земля логических сигналов
2	Вход программирования напр.	от 0 до 10 В пост. тока =от 0 до 100 % ном. вых. знач.
3	Вход +24 В	Вход +24 В
4	Вход +24 В	Вход +24 В
5	Контроллер напряжения	от 0 до 5 В пост. тока =от 0 до 100 % ном. вых. знач.
6	Заземление питания	Заземление питания
7	Заземление питания	Заземление питания
8	Заземление питания	Заземление питания
9	Заземление питания	Заземление питания

