СТРАНИЦА 1 ИЗ 3

Модуль ЕВМ20 обеспечивает питанием электронно-лучевые колонны в растровых электронных микроскопах, обеспечивая энергию для ускорения, смещения и накала в одном компактном корпусе. Запатентованная компанией Spellman топология и твердотельная изоляция системы высокого напряжения позволяет кардинально изменить размеры, стоимость и эксплуатационные характеристики источника питания в сравнении с другими источниками для РЭМ. Модуль ЕВМ20 обеспечивает программируемое питание ускорителя от 0 до -20 кВ при 200 мкА, с эффективной регулировкой, низким уровнем шума и высокой стабильностью. Модуль ЕВМ20 обеспечивает плавающее относительно ускорителя напряжение питания смещения и накала. Сигналы программирования подаются на дифференциальные аналоговые входы для минимизации влияния внешнего шума и напряжений смещения. В комплект входит контроллер тока ускорителя относительно земли. Модуль ЕВМ20 устойчив к дуговому пробою и короткому замыканию, а также имеет защиту от перегрузок по напряжению и току.

ОСНОВНОЕ ПРИМЕНЕНИЕ

Растровые электронные микроскопы

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Входное напряжение:

+24 В постоянного тока, ±5%, 1,5 A (макс.)

Высоковольтные выходы:

УСКОРИТЕЛЬ:

Напряжение:

от 0 В до $-20~\mathrm{kB}$ относительно земли на максимальной нагрузке

Ток:

200 мкA (макс.), непрерывно от -500 B до -20 кB

Точность:

 ± 1 % от -500 В до -20 кВ

Нестабильность по нагрузке:

< ±100 ppm при изменении нагрузки от 20 до 200 мкА

Нестабильность напряжения в сети:

 $<\pm10$ ppm при изменении напряжения в сети на $10\,\%$

Пульсации:

< 15 ppm p-p при -20 кВ, 200 мкА, максимальные смещение и накал

Триодный источник питания для электронно-лучевых колонн

- Высокая точность, низкий уровень шума, сверхвысокая стабильность
- Зашита от перегрузки по току/напряжению
- Защита от дугового пробоя и короткого замыкания
- Возможность изготовления в соответствии с требованиями производителя оригинального оборудования
- Сертифицирован на соответствие требованиям СЕ и RoHS, разработан в соответствии с требованиями UL

Температурный коэффициент:

<100ppm/°C

Стабильность:

30 ppm / 3 минуты при токе нагрузки 100 мкА после часового прогрева

СМЕЩЕНИЕ:

(Относительно ускорителя)

Напряжение:

от 0 до +1,5 Кв (макс. допустимое выходное напряжение 2 кВ)

Ток:

150 мкА (макс.)

Точность:

±3% от макс. значения

Нестабильность напряжения в сети:

<±0,1% при изменении напряжения в сети на 10%

Пульсации:

0,1% p-p

Температурный коэффициент:

<1000 ppm/°C

Стабильность:

1 %/10 минут

накал:

(Относительно ускорителя)

Мощность:

от 0 до 12 Вт

Сопротивление нагрузки:

1 Ом ±5%

Точность:

±3% от макс. значения

Нестабильность по нагрузке:

<1 % при 10 % изменении сопротивления нагрузки

Нестабильность напряжения в сети:

<1 % при изменении напряжения в сети на 10 %

Пульсации:

<0,1 % p-p (макс.)

Температурный коэффициент:

<300ppm/°C

Стабильность:

100ppm/10 минут

СТРАНИЦА 2 ИЗ 3

интерфейс:

Входные параметры:

Аналоговый контроль ускорителя, накала и смещения

Выход

специальное 3-контактное гнездо и кабельная сборка

Температура:

Рабочая: от +5 до +40 °C Температура хранения: от -20 до +50 °C

Влажность:

от 20% до 85% без конденсации.

Размеры:

270 мм \times 60 мм \times 200 мм (В \times Ш \times Д) без монтажных кронштейнов

Macca:

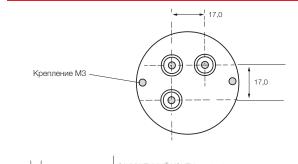
<4,5 KF

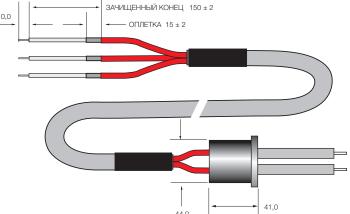
Соответствие нормативным документам:

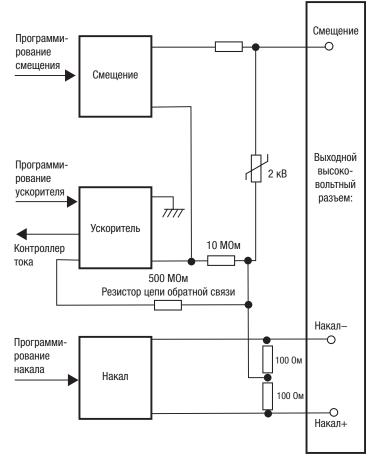
Устройство имеет маркировку СЕ согласно EN 61010:2010 «Требования к безопасности измерительного, контрольного и лабораторного электрооборудования» и соответствует требованиям RoHS.

Устройство было разработано для соответствия требованиям стандартов: UL 61010-1:2012 «Требования к безопасности измерительного, контрольного и лабораторного электрооборудования. Часть 1. Общие требования» и CAN/CSA-C22.2 № 61010-1-12:2015.

ВХОДНОЙ РАЗЪЕМ ПИТАНИЯ 3-КОНТАКТНЫЙ JST МОДЕЛЬ В 3PS-VH

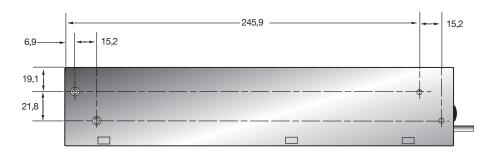

KOHT.	СИГНАЛ	ПАРАМЕТР
1	Вход высоковольтного источника питания +24 B	Вход +24 В пост. тока
2	Вход 0 В	Общий +24 В пост. тока
3	FG	Заземление корпуса


РАЗЪЕМ УПРАВЛЕНИЯ И КОНТРОЛЯ 10-КОНТАКТНЫЙ JST МОДЕЛЬ S10B-EH


конт.	СИГНАЛ	ПАРАМЕТР
1	ПРОГРАМ. НАКАЛА (+)	Вход (+) программирования накала
2	ПРОГРАМ. НАКАЛА (—)	Вход (–) программирования накала
3	СМЕЩЕНИЕ (+)	Вход (+) смещения
4	СМЕЩЕНИЕ (–)	Вход (–) смещения
5	ПРОГРАМ. УСКОР. (+)	Вход (+) программирования напряжения ускорителя
6	ПРОГРАМ. УСКОР. (–)	Вход (–) программирования напряжения ускорителя
7	EMS	Контроль тока эмиссии — выход
8	EMS ЗАЗЕМЛЕНИЕ	Контроль тока эмиссии — заземление (0 В)
9	КОНТР. УСКОР.	Контроль напряжения ускорителя — выход
10	КОНТР. УСКОР. ЗАЗЕМЛЕНИЕ	Контроль напряжения ускорителя— заземление (О B)

Порядок заказа:		
Стандарт:	№ по каталогу: EBM20N4/24	
ВВ кабель:	№ по каталогу: HVC30/3IS/LL1650 (кабель 1,65 м)	

ДЕТАЛИЗИРОВАННЫЙ ЧЕРТЕЖ СБОРКИ ВВ КАБЕЛЯ




СТРАНИЦА З ИЗ З

РАЗМЕРЫ в миллиметрах [мм]

вид сбоку

