UM Series

  • 62.5V to 6kV, Fixed Negative or Positive Polarity
  • Output Power of 4, 20 and 30 Watts
  • V/I Regulation with Automatic Crossover Control
  • V/I Current Monitor Signals; +5V Ref Output
  • CE Listed, UL Recognized and RoHS Compliant

DC-DC High Voltage Power Supplies

Form, Fit and Function Design:

Spellman’s UM Series of printed circuit board mountable, high voltage modules offer a form, fit and function replacement for presently available commercially made units, while providing additional features and benefits at competitive pricing. Utilizing proprietary power conversion technology and Spellman's six decades of high voltage experience, these SMT based high voltage modules provide improved performance/reliability and easier system integration at a lower cost when compared to the competition.

Advanced Power Conversion Topology:

UM converters use a proprietary zero voltage switching power conversion topology providing exceptional efficiency and inherent low noise and ripple. Radiated emissions are reduced compared to conventional switching topologies, minimizing or even eliminating the need to shield the unit from adjacent circuitry.

The high voltage output is generated using a ferrite core high voltage step up transformer which feeds the output circuitry. Units at 1kV or higher utilize an arrangement of half wave Cockcroft-Walton voltage multiplier stages to obtain the specified high voltage output, while lower voltage units use a robust rectification and filter circuit.

Due to the fixed, high frequency conversion rate the output capacitance is small resulting in minimal stored energy. Through the use of generously rated surge limiting resistors and a fast acting current loop, all units are fully arc and short circuit protected.

Control and Regulation:

The actual output voltage generated is sampled via a high impedance divider to create a voltage feedback signal. A current feedback signal is created via a current sense resistor in the low end return of the high voltage output circuitry. These two accurate ground referenced feedback signals are used to precisely regulate and control the units in addition to external monitoring purposes.

Due to the UM’s unique converter topology it can provide full current into low impedance loads or even a short circuit. Standard units limit at 103% of maximum rated output current.

Standard Interface:

The Spellman UM Series interface provides current program­ming capability and positive polarity, buffered, low output imped­ance voltage and current monitor signals (zero to +4.64Vdc equals zero to full scale rated). A voltage programming input is provided where 0 to +4.64Vdc equals 0 to 100% of rated voltage. Current programmability allows the user to set where the unit will current limit, anywhere from 0 to 100% of maximum rated current. This feature is beneficial where less than full output current is desired, like in the case of protecting a sensitive load.

The buffered low impedance voltage and current monitor signals can drive external circuitry directly, while minimizing loading and pickup effects. These features save the user the expense and implementation of external interface buffering circuitry while improving overall signal integrity. This standard interface is made available via a row of 13 pins with 0.1. pin spacing. A legacy interface (7 pins on a 0.2. spacing) that is compatible with presently available commercially made units can be provided by ordering the “L” option.

Mechanical and Environmental Considerations:

The UM Series are solid encapsulated, printed circuit board mountable, plastic cased converters measuring only 2.97. X 1.5. X 0.83. (75.4mm X 38.1mm X 21.1mm). All units are encapsulated using a silicon based potting material which is considerably lighter in weight than epoxy. Two isolated, non grounded 2-56 machine screws thread into the module to securely mount it to the printed circuit board, relieving any stress on the interface pins. Mounting plates, brackets and flanged mounting options are also available.

Regulatory Approvals:

Compliant to 2004/108/EC, the EMC Directive and 2006/95/EC, the Low Voltage Directive. UL/CUL recog­nized, File E227588. Compliant to 2002/95/EC, RoHS.

Specifications

(Ref. 128068-001 REV. M)

Input Voltage:

12Vdc for 4W, 24Vdc for 20W and 30W

Nominal Voltage Range:

11Vdc to 30Vdc for 4W, 23Vdc to 30Vdc for 20W and 30W

Input Current: (typical)

Disabled: 30mA

No load: 90mA

Full load:

4 watt units: 0.5A

20 watt units: 1.0A

30 watt units: 1.5A

Efficiency:

80-85%, typical

Voltage Regulation:

Line: <0.01%

Load: <0.01%

Current Regulation:

Line: <0.01%

Load: <0.01%

Stability:

0.01% per 8 hours, 0.02% per day after 30 min. warmup

Accuracy:

2% on all programming and monitoring, except I Sense 10%

Temperature Coefficient: (typical)

Standard: 100ppm/°C Optional: 25ppm/°C (T Option)

Environmental:

Temperature Range:

Operating: 0°C to 65°C case temperature

Storage: -55°C to 85°C, non operational

Humidity:

10% to 90%, non-condensing.

Cooling:

Convection cooled, typical. 30 watt units operating at full power might require additional cooling to maintain case temperature below 65°C. Methods may include: forced air cooling, use of heat sink or metal case, etc. It is the user’s responsibility to maintain the case temperature below 65°C. Damage to the power supply due to inadequate cooling is considered misuse and repairs will not be covered under warranty.

Dimensions:

2.96. L X 1.49. W X 0.81. H (75.2mm X 37.9mm X 20.6mm)

Weight:

4 oz. (113g), typical

See product PDF for more specification and features.

UM 4W SELECTION TABLE

Model Number Output V Output Current Low Freq. Ripple %Vp-p @ 1Hz-1kHz High Freq. Ripple %Vp-p @ 1kHz-1MHz Output Capacitance Arc Limiting Resistanc I Sense Scaling Full Scale Signal High Voltage Divider Resistance
UM0.062*4 0 to 62.5V 64mA 0.030 0.028 8.8μF 1.5V 0.5MΩ
UM0.125*4 0 to 125V 32mA 0.045 0.014 8.8μF 4.4Ω 2.75V 0.88MΩ
UM0.25*4 0 to 250V 16mA 0.034 0.017 2.2μF 20Ω 4.9V 1.50MΩ
UM0.5*4 0 to 500V 8mA 0.036 0.040 0.8μF 94Ω 10.1V 2.65MΩ
UM1*4 0 to 1KV 4mA 0.025 0.015 0.2μF 470Ω 10.75V 20MΩ
UM2*4 0 to 2kV 2mA 0.022 0.015 0.097μF 1.0KΩ 10.4V 30MΩ
UM4*4 0 to 4kV 1mA 0.019 0.017 0.012μF 9.4KΩ 11.1V 100MΩ
UM6*4 0 to 6kV 0.67mA 0.016 0.015 0.007μF 20KΩ 9.9V 150MΩ

UM 20W SELECTION TABLE

Model Number Output V Output Current Low Freq. Ripple %Vp-p @ 1Hz-1kHz High Freq. Ripple %Vp-p @ 1kHz-1MHz Output Capacitance Arc Limiting Resistance I Sense Scaling Full Scale Signal High Voltage Divider Resistance
UM0.062*20 0 to 62.5V 320mA 1Hz-1kHz 0.060 0.088 8.8μF 330mV 0.5MΩ
UM0.125*20 0 to 125V 160mA 0.067 0.044 8.8μF 4.4Ω 675mV 0.88MΩ
UM0.25*20 0 to 250V 80mA 0.035 0.019 2.2μF 20Ω 1.135V 1.50MΩ
UM0.5*20 0 to 500V 40mA 0.041 0.040 0.8μF 94Ω 2.25V 2.65MΩ
UM1*20 0 to 1KV 20mA 0.039 0.095 0.2μF 470Ω 4.35V 20MΩ
UM2*20 0 to 2kV 10mA 0.026 0.016 0.097μF 1.0KΩ 6.6V 30MΩ
UM4*20 0 to 4kV 5mA 0.023 0.028 0.012μF 9.4KΩ 6.65V 100MΩ
UM6*20 0 to 6kV 3.3mA 0.017 0.018 0.007μF 20KΩ 6.74V 150MΩ

UM 30W SELECTION TABLE

Model Number Output V Output Current Low Freq. Ripple %Vp-p @ 1Hz-1kHz High Freq. Ripple %Vp-p @ 1kHz-1MHz Output Capacitance Arc Limiting Resistance I Sense Scaling Full Scale Signal High Voltage Divider Resistance
UM0.062*30 0 to 62.5V 480mA 0.075 0.112 8.8μF 500mV 0.5MΩ
UM0.125*30 0 to 125V 240mA 0.075 0.056 8.8μF 4.4Ω 930mV 0.88MΩ
UM0.25*30 0 to 250V 120mA 0.055 0.031 2.2μF 20Ω 1.65V 1.50MΩ
UM0.5*30 0 to 500V 60mA 0.085 0.041 0.8μF 94Ω 3.4V 2.65MΩ
UM1*30 0 to 1KV 30mA 0.032 0.171 0.2μF 220Ω 6.5V 20MΩ
UM2*30 0 to 2kV 15mA 0.031 0.112 0.097μF 470Ω 9.85V 30MΩ
UM4*30 0 to 4kV 7.5mA 0.028 0.071 0.012μF 4.4KΩ 9.85V 100MΩ
UM6*30 0 to 6kV 5mA 0.020 0.051 0.007μF 9.4KΩ 10.0V 150MΩ

Note: Total ripple is the sum of the low frequency and high frequency ripple. Grayed text indicates Legacy interface signals.

STANDARD INTERFACE

Pin Signal Parameters
1 Power Ground Return +12Vdc or +24Vdc power return/HV return
1A Signature Resistor Unique Identifying resistor connected to ground
2 + Power Input +12Vdc or +24Vdc power input
2A N/C  
3 I Sense See I Sense text and tables
3A I Mon 0 to 4.64Vdc = 0 to 100% rated output. Zout < 10kΩ
4 Enable Input Low (<0.7V, Isink@1mA)=HV OFF,
High (open or >2V)=HV ON
4A V Mon 0 to 4.64Vdc = 0 to 100% rated output. Zout < 10kΩ
5 Signal Ground Signal Ground
5A I Pgm 0 to 4.64Vdc = 0 to 100% rated output. Zin > 47kΩ
Leave open for preset current limit @103% of rated output current
6 Remote Adjust Positive Polarity Unit:
0 to +4.64VDC = 0 to 100% rated voltage,
Zin >1MΩ
Negative Polarity Unit:
+5VDC to 0.36V = 0 to 100% rated voltage,
Zin >100kΩ
Leave open if pin 6A (VPgm) is used for programming
6A V Pgm  0 to 4.64Vdc = 0 to 100% rated voltage. Zin > 100kΩ
Leave open if pin 6 (remote adjust) is used for programming
7 +5V Reference Output +5Vdc ±0.5%, 50ppm/°C. Zout =475Ω
8 HV Ground Return HV Ground Return
7 E Out Monitor 10:1 ratio for models below 1kV, 100:1 ratio for models
1kV and above. Polarity of Voltage Monitor signal equals
polarity of unit. Accuracy is ±2%, 100ppm/°C. Calibrated
with DVM with 10MΩ input impedance
10 HV Output HV Output
11 HV Output HV Output

Grayed out signals are provided for backward legacy compatibility and their use is not required

Power Ground Return, Signal Ground and HV Ground Return are connected
internally. For best performance they should not be connected externally.

LEGACY INTERFACE (L OPTION)

Pin Signal Parameters
1 Power Ground Return +12Vdc or +24Vdc power return/HV return
2 + Power Input +12Vdc or +24Vdc power input
3 I Sense See I Sense text and tables for details
4 Enable Input  Low (<0.7V, Isink@1mA)=HV OFF,
High (open or >2V)=HV ON
5 Signal Ground Signal Ground
6 Remote Adjust  Positive Polarity Unit:
0 to +4.64VDC = 0 to 100% rated voltage,
Zin >1MΩ
Negative Polarity Unit:
+5VDC to 0.36V = 0 to 100% rated voltage,
Zin >100kΩ
7 +5V Reference Output +5Vdc ±0.5%, 50ppm/°C. Zout =475Ω
8 HV Ground Return HV Ground Return
9 E Out Monitor 10:1 ratio for models below 1kV, 100:1 ratio for models
1kV and above. Polarity of Voltage Monitor signal equals
polarity of unit. Accuracy is ±2%, 100ppm/°C. Calibrated
with DVM with 10MΩ input impedance
10 HV Output HV Output

Power Ground Return, Signal Ground and HV Ground Return are connected internally. For best performance they should not be connected externally.

Tables & Diagrams

DIMENSIONS: in.[mm]

17 PIN - Standard Interface

UM High Voltage Power Supply (Image 15)

11 PIN - Standard Interface

UM High Voltage Power Supply (Image 16)

Note: All specifications are subject to change without notice. Please consult the PDF version of this datasheet for the most up-to-date revision.